MICRO-EH

PROGRAMMABLE CONTROLLER

Hitachi's MICRO-EH Series PLC Delivers Various Useful Functions

 for Small Automation Processes!"MICRO-EH is an all-in-one type PLC packed with powerful functions."

High Performance in a Small Size 12-bit analog inputoutput (23-point type)
Two built-in potentiometers (except tor 10-point type)
Buit-in h igh-speed Buill-in high-speed counter
(10/14/23/28-point type : 10 kHz , 20/401/64-point type $: 100 \mathrm{kHz})$ PWM and pulse train output (MICRO-EH with DC output) Maximum 176 I/O points
64 -point type $1+28$-point expansion unit $\times 4$
Flash memory for storing user programs - user program is retained
without battery
Battery for dory Battery for data memory back-up (20/23/288/4/64- point type)
Built-in real-time clock (20/23/28/40/64- point type) Digital filiter
Power supply for sensors
User-friendliness
Removable terminals for easy set-up (except for 10 -point type) Easy installation by snapping on a DIN rail or screwing onto a panel
Easy-to-see terminal layout indication
Compatibllity with H/EH serles PLC Same programming software for utilization of valuable existing user

Conformity to Global Standards CE, UL, c-UL and C-Tick approval
Network Compatibility
S -232C port standard
RS-422/485 port as standard
(up to 32 units connectable)
Environmental Friendliness Laser marking for elimination of sticker type nameplates Battery-less operation for waste reduction

New release

1. 23/28-point type:Extension of program capacity (3k steps $\rightarrow 15.7 \mathrm{k}$ steps). Extension of data memory capacity (4,096 words $\rightarrow 32,768$ words).
2. Thermocouple expansion unit
3. 64 points expansion unit.
4. Positioning expansion unit.

Application Examples
Machine Control: Simple positioning control for Cutting Machine

Line Control: Fruit Size Selection

Network Control: Monitoring System with SCADA software

FEATURES

High Performance in a Small Size

(2) 12-bit analog input/output (23-point type)

23-point type has 2 analog inputs and 1 analog output as standard. This feature makes it possible for 23-point type to be connected directly with various sensors and actuators without adding any analog input /output modules. Either voltage or current can be selected at each point. [Input: $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$, Output: $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$]

This feature can be applied to a pump system for reservoirs using water level sensors.

(2) Two built-in potentiometers (except for 10-point and 20/40/64-point type)

Timer constant value can be easily changed using these potentiometers even if you do not have a programming device.
Values set by the potentiometers are always reflected in the special internal output. Smoothing is possible for these values.
[The value of the potentiometer 1 and 2 are stored in WRF03E and WRF03F respectively.] [Smoothing: to average the value that varies with time by dividing the specified value.] [The timer value must be set by a variable in advance.]

With these potentiometers, operation interval can be tuned easily.

e Potentiometers

- The FLASH memory which protects a user's program

FLASH memory for backup of a user's program.
The user program is stored in FLASH memory so that the user program can be retained in case
the battery goes dead.
If user program are changed frequently, the lifetime of FLASH memory will be shorter.
3 Please refer to the application manual about the times over writing to FLASH memory.

Built-in high-speed counter

A high-speed counter is provided as standard eliminating the need for an additional counter module for high-speed applications.
14/23/28-point type with DC input can count up to 1-phase
4 channels.
14/23/28-point type: Max.10kHz
20/40/64-point: Max.100kHz
Select one mode from:
1-ph 4ch, 2ph 2ch, or 2-ph 1ch+1-ph 2ch [20/40/64-point] 1 -ph 4 ch, 1 -ph 2ch, or 2 -ph 1ch +1 -ph 1 ch [14-/23-/28-point] 1 -ph 3ch, 1-ph 2ch, or 2-ph 1ch [10-point]
By taking input directly from an external encoder, the position of the object being controlled can be detected.
[The functions that can be used (pulse train, PWM, interruption input, etc.) vary in each mode.]
This feature can be applied to the detection of the position of objects on various assembly, processing, and testing lines.

(2) PWM and pulse train output

 (MICRO-EH with DC output)PWM output is provided as standard.

Temperature control and light brightness control are possible by modulating the pulse width. 10/14/23/28-point:up to $2 \mathrm{kHz} \quad 20 / 40 / 64$-point:up to 65 kHz Pulsetrain outputis also prorided as standard

Simple positioning control, fine tuning of conveyor's moving distance, etc. are possible by pulse train output with acceleration/deceleration function. 10/14/23/28-point:Max.5kHz 20/40/64-point:Max.65kHz

NEW (7) Maximum 320 I/O points (64-point type x1 + 64-point expansion unit x4)

Up to 4 expansion units can be connected. (except for 10-point type)
Cable length is up to 2 m eters in total.

(7) Flash memory for storing user programs

To protect valuable programs from being erased during power failure, the MICRO-EH contains flash memory for storing user programs.

Battery for data memory back-up (20/23/28/40/64-point type)

An optional battery is mountable for data memory back-up.

(2) Built-in real-time clock (20/23/28/40/64-point type)

A real-time clock is provided as standard (20/23/28/40/64-point type) for event scheduling.

(2) Digital filter

Filtering delay time can be adjusted to eliminate chattering. It can be set between 0 and 20 ms in units of 0.5 ms .

Power supply for sensors (14/20/23/28/40/64-point type and 14/28-point expansion unit)
The 24 V terminal at the input terminal block can supply current to external equipment. [When this power is used as the power supply for the input part of the MICRO-EH, the remaining power can be used for sensors.]

User-friendliness

Removable terminals for easy set up

 (except for 10-point type)Replacement of the MICRO-EH can be accomplished in a fraction of the time.

Easy installation by snapping on a DIN rail or screwing onto a panel

Terminal protective covers are hinged and can stay open for easy wiring.
Terminal layout indication on the front panel can be read even when the

Benters Compatibility with H/EH series PLC

Same programming software for utilization of valuable existing user programs -LADDER EDITOR for Windows ${ }^{\circledR}$
[Pro-H (IEC61131-3) is also available.]

LADDER EDITOR for Windows ${ }^{\circledR}$

Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Conformity to Clobal Standards
CE, UL, c-UL and C-Tick approvals

Please refer to P28-29 for details.

Network Compatibility

RS-232C port as standard (Port 1)

Communication speed can be selected from 4800, 9600, 19200, and 38400 bps.*1
Modem control function is incorporated. (except for 10-point type)

* 1: Communication speed for 10 -point type is fixed at 4800 bps.

By connecting the port 1 with a peripheral unit, the created programs can be transferred, the programs stored in the CPU can be read/verified, and CPU operating status can be monitored. In addition, a monitoring system that connects the display device, etc. can be configured.

(3) RS-422/485 port as standard for 23/28-point type (port 2)

Either RS-422 or RS-485 can be selected by the connection wiring.

1:n station communication by HI-PROTOCOL is possible via the port $2^{* 2}$. By creating and including a control procedure based on HI-PROTOCOL on the personal computer that will become the host, it is then possible to control 32 units from one host.

* 2: When performing 1:n station communication using port 2, the transmission control procedure that can be used is restricted by the interface. Since transmission and reception are started up at the same time in transmission control procedure 2, it is not possible to perform communication with an RS-485 interface. The table shown right reflects the correspondence between transmission control procedure and interface.

		RS-422	RS-485
Transmission control procedure 1	$1: 1$	Possible	Possible
Transmission control procedure 2	$1: 1$	Possible	Possible
	1:n	Possible	Impossible

Option Communication board for 20/40/64-point type

With RS-232C or RS-422/485 or USB-232C convertion communication board communication port2 can be used as a programming port or a general-purpose port.

Option Memory board for 20/40/64-point type

With Memory board, it can be used for backup of a user program etc.

Environmental Friendliness

Laser marking system is employed for the MICRO-EH series to eliminate sticker type nameplates.
ABS material is used for outer case of the MICRO-EH for easy recycling.
Battery-less operation with flash memory helps reduce waste.

SYSTEM GONFIGURATION

10-point Type

6 inputs and 4 outputs (not expandable) 10-point type MICRO-EH can be easily mounted on machines or equipment thanks to its small size ($\mathrm{D}: 47 \mathrm{~mm}$).

PROGRAMMABLE CONTROLEE

POW- io: $_{4}^{23}$ EH-D10DTP

14/20/23/28/40/64-point Type

NEW Maximum 4 expansion units can be connected to each type.

-14-point type: Maximum 168 inputs and 102 outputs (4 expansion units), 270 points in total
■20-point type: Maximum 172 inputs and 104 outputs (4 expansion units), 276 points in total
■23-point type: Maximum 173 inputs and 106 outputs (4 expansion units), 279 points in total
-28-point type: Maximum 176 inputs and 108 outputs (4 expansion units), 284 points in total
40-point type: Maximum 184 inputs and 112 outputs (4 expansion units), 296 points in total
■64-point type: Maximum 200 inputs and 120 outputs (4 expansion units), 320 points in total

Cable length: Max. 2 m in total

- Three different lengths of expansion cable are available.

[^0]Maximum cable length between the basic unit and the expansion unit is 2 m .

Functional Specifications

Item		10-point type	14-point type	20-point type	23-point type	28-point type	40-point type	64-point type
RS-232C port		1	1	1	1	1	1	1
RS-422/485 port		-	-	1(Optinal)	1	1	1(Optinal)	1(Optinal)
High-speed counter		10 kHz 1-phace 3ch, 1-phace 2ch or 2-phace 1ch	10kHz 1-phace 4ch, 1-phace 2ch or 2-phace 1ch +1 phace 1ch	100kHz 1-phace 4ch, 2-phace 2ch or 2-phace 1ch +1 phace 2 ch	10kH 1-phace 4ch, or 2-phace 1ch	phace 2ch phace 1ch	or 2-phace 1c	$\begin{aligned} & -1 z \\ & 4 \mathrm{ch} \\ & 2 \mathrm{ch} \\ & \text { 1phace 2ch } \end{aligned}$
Interruption input		3 points	4 points					
PWM output		$\begin{gathered} \mathbf{2 k H z} \\ (\text { in total }) \end{gathered}$		65 kHz (each channel)	$\underset{(\text { in total })}{\mathbf{2 k H z}}$		65 kHz (each channel)	65 kHz (each channel)
Pulse train		$\stackrel{5 \mathrm{kHz}}{(\text { in total })}$		65 kHz (each channel)	5 kHz (in total)		65 kHz (each channel)	65 kHz (each channel)
Analog input		8-bit : 1ch *1	-	-		-	-	-
Analog output		-	-	-	12 bit: $2 \operatorname{ch}(0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA})$ 12 bit: $1 \operatorname{ch}(0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA})$	-	-	-
Potentiometer		-	10-bit : 2ch	-	10-bit : 2ch		-	-
Battery(optional)		-	-	EH-MBATL	EH-MBAT or EH-MBATLC		EH-MBATL	
Real-time clock		-	-	Yes	Yes	Yes	Yes	Yes
Digital filter		Yes						
Power source	AC100/200V	No	Yes	Yes	Yes	Yes	Yes	Yes
	DC24V	Yes						
Input	DC	Yes						
	AC	No	Yes	No	No	Yes	No	No
Output	TR DC24V	Yes						
	RY	Yes						
	SSR	No	Yes	No	No	Yes	No	No
Positioning expansion		No	No	Yes	Yes	Yes	Yes	Yes

※1: EH-D10DRA only

CONNEGTION WITH PERIPHERAL EQUIPMENT

MICRO-EH

Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.

New release of 20/40/64-point type

Built-in high-speed counter (4ch Max.100kHz 32bits) as standard. MICRO-EH 20/40/64-point type.

20/40/64-point unit

I/O points is up

20-point type : Input 12 points, Output 8 points 40-point type : Input 24 points, Output 16 points 64 -point type : Input 40 points, Output 24 points

User program memory, Data memory is up.

Program capacity is extended to 16 k steps, and data memory capacity is extended to 32 k words, which enables 64-point type to support middle range

New FUN commands

54 kinds of commands are added. The added FUN commands are a data conversion command, a floating point arithmetic, etc.

User program memory

20/40/64-point type

Data memory
20/40/64-point type
32k words

10-28-point type \square

4ch, 100kHz, 32 bits high-speed counter

The counter of 20/40/64-point type can support up to 100 kHz (single phase) or 60 kHz (2-phase) pulses. The 16 -bit counter is extended to the 32 -bit counter.

Pulse train output

A pulse output with an output frequency of 65 kHz is possible for 20/40/64-point type. Moreover, the number of output pulses can be set up by 32 bits.

Pulse train output

20/40/64-point type
65 kHz 32 bits (each channel)

10-28-point type
5 kHz (total) 16 bits

PWM output

20/40/64-point type
65 kHz (each channel)

10-28-point type
2 kHz (total)

Selectable option boards

A function is expandable by attaching an option board In a basic unit.
With RS-232C or RS-422/485 or USB-232C convertion communication board, communication port 2 can be used as an programming port or a general-purpose port. With Memory board, it can be used for backup of a user program etc.
A communication board and a memory board can be used together.

PID function

PID function is supported by 20/40/64-point unit.

PRODUGT SPECIFICATIONS

10/14/23/28-point type CPU Specifications

$$	Name			10-point type	14-point type	23-point type	28-point type
	CPU						
	Processing system			Stored program cyclic system			
	Processing speed	Basic instructions		$0.9 \mu \mathrm{~s} /$ instruction			
		Application instructions		Several $10 \mu \mathrm{~s} /$ instruction			
	User program memory			3 k steps max. (FLASH memory)		16 k steps max. (FLASH memory)	
Operation processing specifications	Instruction language	Basic instructions		39 types such as LD, LDI, AND, ANI, OR, ORI, ANB, ORB, OUT, MPS, MRD, MPP, etc.			
		Arithmetic instructions Application instructions		62 types (arithmetic, application, control, FUN command etc.)			
	Ladder	Basic instructions				ch as	-1
		Arithmetic instructions Application instructions		62 types (arithmetic, application, control, FUN command etc.)			
I/O processing specifications	External I/O	I/O processing system		Refresh processing			
		Maximum number of points		10 points	126 points	135 points	140 points
	Internal output	Bit		1,984 points (R0 to R7BF)			
		Word		4,096 wo	0 to WRFFF)	32,768 words (WR0 to WR7FFF)	
		Special	Bit	64 points (R7C0 to R7FF)			
			Word		512 words (to WRF1FF)	
		Bit/word shared		16,384 points, 1,024 words (M0 to M3FFF, WM0 to WM3FF)			
	Timer counter	Number of points		256 points (TD + CU) *1			
		Timer set value		0 to 65,535 , timer base $0.01 \mathrm{~s}, 0.1 \mathrm{~s}, 1 \mathrm{~s}$ (0.01s has maximum 64 points *2)			
		Counter set value		1 to 65,535 times			
	Edge detection			$\begin{aligned} & 512 \text { points (DIF0 to DIF511: Decimal) } \\ & +512 \text { points (DFN0 to DFN511: Decimal) } \end{aligned}$			
	Program system			Instruction language, ladder diagram			
Peripheral equipment	Peripheral unit			Programming software (LADDER EDITOR DOS version/Windows ${ }^{\circledR}$ version, Pro-H) Instruction language programmer and form graphic display programmer cannot be used.			
Maintenance functions	Self-diagnosis			PLC error (LED display): Microcomputer error, watchdog timer error, memory error, program error, system ROM/RAM error, scan time monitoring, battery voltage low detection, etc.			

[^1]
10/14/23/28-point type Input/Output Specifications

Input/Output specification and points of Basic unit (Onumber corresponds to the number of table of specification.)

Type	Model Name	Power		Input	Input	Point	Output	Output Point						
		24 V DC	$\begin{array}{\|c\|} \hline 100 / 200 \mathrm{~V} \\ \text { AC } \end{array}$		24 V DC	$\begin{gathered} \text { 100/200V } \\ \text { AC } \end{gathered}$		Relay Output	Transistor Output		Transistor Output (source ESCP)		Transistor	SSR
									Low Current	High Current	Low Current	High Current	Output(source)	
					(1)	(4)		(5)	(7)	(8)	(9)	(10)	(11)	(13)
10 Points	EH-D10DT	\bigcirc		24 V DC $\times 6$	6 (1)		Transistor $\times 4$ (sink)		4 (1)					
	EH-D10DTP	\bigcirc		24 V DC $\times 6$	6 (1)		Transistor $\times 4$ (source)		4 (1)					
	EH-D10DR	\bigcirc		24 V DC $\times 6$	6 (1)		Relay $\times 4$	4 (1)						
14 Points	EH-D14DT	\bigcirc		24 V DC $\times 8$	8 (2)[4,4]		Transistor $\times 6$ (sink)		4 (1)	2				
	EH-D14DTP	\bigcirc		24 V DC $\times 8$	8 (2)[4,4]		Transistor $\times 6$ (source)		4 (1)	2				
	EH-D14DTPS	\bigcirc		24 V DC $\times 8$	8 (2)[4,4]		Transistor (source ESCP) $\times 6$				4 (1)	2		
	EH-D14DR	\bigcirc		24 V DC $\times 8$	8 (2)[4,4]		Relay $\times 6$	6 (3)[1,1,4]						
	EH-A14DR		\bigcirc	24 V DC $\times 8$	8 (2)[4,4]		Relay $\times 6$	6 (3)[1,1,4]						
	EH-A14AS		\bigcirc	AC $\times 8$		$8(2)[4,4]$	SSR $\times 6$							$6(2)[2,4]$
23 Points	EH-D23DRP	\bigcirc		$\begin{gathered} 24 \mathrm{~V} \text { DC } \times 13 \\ \text { Analog } \times 2 \text { (12bits) } \end{gathered}$	$\begin{aligned} & 13(3) \\ & {[4,4,5]} \end{aligned}$		Relay $\times 9$ Transistor $\times 1$ (source) Analog 1 (12bits)	$\begin{gathered} 9(5) \\ {[4,1,1,1,2]} \end{gathered}$					1 (1)	
	EH-A23DRP		\bigcirc	$\begin{gathered} 24 \mathrm{~V} \text { DC } \times 13 \\ \text { Analog } \times 2(12 \text { bits }) \end{gathered}$	$\begin{gathered} 13(3) \\ {[4,4,5]} \end{gathered}$		$\begin{gathered} \text { Relay } \times 9 \\ \text { Transistor } \times 1 \text { (source) } \\ \text { Analog } 1 \text { (12bits) } \\ \hline \end{gathered}$	$\begin{gathered} 9(5) \\ {[5,1,1,1,2]} \end{gathered}$					1 (1)	
	EH-A23DR		\bigcirc	24V DC $\times 13$ Analog $\times 2$ (12bits)	$\begin{aligned} & 13(3) \\ & {[4,4,5]} \end{aligned}$		$\begin{gathered} \text { Relay } \times 10 \\ \text { Analog } 1 \text { (12bits) } \end{gathered}$	$\begin{gathered} 10(6) \\ {[1,4,1,1,1,2]} \end{gathered}$						
28 points	EH-D28DT	\bigcirc		24 V DC $\times 16$	$\begin{gathered} 16(4) \\ {[4,4,4,4]} \end{gathered}$		Transistor $\times 12$ (sink)		8 (2)[6,6]	4				
	EH-D28DTP	\bigcirc		24 V DC $\times 16$	$\begin{gathered} 16(4) \\ {[4,4,4,4]} \end{gathered}$		Transistor $\times 12$ (source)		8 (2)[6,6]	4				
	EH-D28DTPS	\bigcirc		24 V DC $\times 16$	$\begin{gathered} 16(4) \\ {[4,4,4,4]} \end{gathered}$		$\begin{gathered} \text { Transistor } \\ \text { (source ESCP) } \times 12 \end{gathered}$				8 (2)[6,6]	4		
	EH-D28DRP	\bigcirc		24 V DC $\times 16$	$\begin{gathered} 16(4) \\ {[4,4,4,4]} \end{gathered}$		$\begin{gathered} \text { Relay } \times 11 \\ \text { Transistor } \times 1 \text { (source) } \end{gathered}$	$\begin{gathered} 11(6) \\ {[4,1,1,1,1,3]} \end{gathered}$					1 (1)	
	EH-D28DR	\bigcirc		24 V DC $\times 16$	$\begin{gathered} 16(4) \\ {[4,4,4,4]} \end{gathered}$		Relay $\times 12$	$\begin{gathered} 12(7) \\ {[1,4,1,1,1,1,1,3]} \end{gathered}$						
	EH-A28DRP		\bigcirc	24 V DC $\times 16$	$\begin{gathered} 16(4) \\ {[4,4,4,4]} \end{gathered}$			$\begin{gathered} 11(6) \\ {[4,1,1,1,1,3]} \end{gathered}$					1 (1)	
	EH-A28DR		\bigcirc	24 V DC $\times 16$	$\begin{gathered} 16(4) \\ {[4,4,4,4]} \end{gathered}$		Relay $\times 12$	$\begin{gathered} 12(7) \\ {[1,4,1,1,1,1,3]} \end{gathered}$						
	EH-A28AR		\bigcirc	AC $\times 16$		$\begin{gathered} 16(4) \\ {[4,4,4,4]} \\ \hline \end{gathered}$	Relay $\times 12$	$\begin{gathered} 12(7) \\ {[1,4,1,1,1,1,1,3]} \end{gathered}$						
	EH-A28AS		\bigcirc	AC $\times 16$		$\begin{gathered} 16(4) \\ {[4,4,4,4]} \end{gathered}$	SSR $\times 12$							$\begin{gathered} 12(4) \\ {[2,4,2,4]} \end{gathered}$

The value of (): number of common. The value of []:number of I/O points to each common.
Input/Output specification and points of Expasion unit (Cnumber corssponds to the number of toble of specificioion.)

[^2]
(1)DC input (Basic units)

Item		Specification	Circuit diagram
Input voltage		24 V DC	
Allowable input voltage range		0 to 30 V DC	
Input impedance		Approx. $2.8 \mathrm{k} \Omega$	$\square 0$
Input current		Approx. 7.5 mA	
Operating	ON voltage	$15 \mathrm{VDC}(\mathrm{min}) / 4.5 \mathrm{~mA}(\max)$	
voltage	OFF voltage	5 V DC (max) / $1.5 \mathrm{~mA}(\max)$	
Input lag	OFF \rightarrow ON	0.5 to 20 ms (configurable)	
	ON \rightarrow OFF	0.5 to 20 ms (configurable)	
Polarity		None	
Insulation system		Photocoupler insulation	
External connection		10-point type: fixed type terminal block 14/23/28-point types: Removable type screw terminal block (M3)	1

*1: Common terminals are separated each other.

(2)DC input (Expansion units)

Item		Specification	Circuit diagram
Input voltage		24 V DC	
Allowable input voltage range		0 to 30 V DC	
Input impedance		Approx. $2.8 \mathrm{k} \Omega$	
Input current		Approx. 7.5 mA	
Operating voltage	ON voltage	$15 \mathrm{~V} \mathrm{DC}(\mathrm{min}) / 4.5 \mathrm{~mA}(\max)$	
	OFF voltage	5 V DC (\max) / 1.5 mA (max)	
Input lag	$\xrightarrow{\text { OFF } \rightarrow \text { ON }}$	0.5 ms or less	
Polarity		None	
Insulation system		Photocoupler insulation	
Input display		LED (green)	
External connection		10-point type: fixed type terminal block 14/23/28-point types: Removable type screw terminal block (M3)	

*1: Common terminals are separated each other.

(3)DC input (8points / $16 p o i n t s$ expansion units)

Item		Spec	cation	Circuit diagram		
		EH-D8EDR EH-D8EDTPS EH-D8EDT	$\begin{aligned} & \text { EH-D8ED } \\ & \text { EH-D16ED } \end{aligned}$			
Input voltage		24 V DC				
Allowable input voltage range		0 to 30 V DC				
Input impedance		Approx. $2.8 \mathrm{k} \Omega$	Approx. $4.8 \mathrm{k} \Omega$			
Input current		Approx. 7.5 mA	Approx. 4.8 mA			
Operating voltage	ON voltage	$15 \mathrm{VDC}($ min $) / 4.5 \mathrm{~mA}($ max $) 15 \mathrm{VDC}($ min $) / 3.0 \mathrm{~mA}($ max $)$				
	OFF voltage	5 V DC (max) / 1.5 mA (max)				
Input lag	OFF \rightarrow ON	$4 \mathrm{~ms} \mathrm{(TYP)}$	2ms(TYP)			
	ON \rightarrow OFF	$4 \mathrm{~ms} \mathrm{(TYP)}$	$2 \mathrm{~ms} \mathrm{(TYP)}$			
Polarity		None				
Insulation system		Photocoupler insulation				
Input display		LED (green)				
External connection		Removable type screw terminal block(M3)				

(4)AC input

Item
Rated load voltage
Minimum switching current
Leak current

$\begin{array}{l}\text { Maximum } \\ \text { load current }\end{array}$	1 circuit
	1 common

$\begin{array}{l}\text { Output } \\ \text { response time }\end{array}$	$\mathrm{OFF} \rightarrow$ ON
	$\mathrm{ON} \rightarrow$ OFF

Surge removing circuit
Fuse
Insulation system
Output display
Externally supplied power
(for driving the relays)
Contact life
Insulation
20,000,000 times (mechanical)
200,000 times (electrical: 2 A)
$1,500 \mathrm{~V}$ or more (external-internal)
500 V or more (external-external)
Removable type screw terminal block
(M3)
5 to 250 V AC, 5 to 30 V DC 10 mA
15 mA or less
2 A (24 V DC, 240 V AC$)$
5 A

ms (max)
None None

Specification
5 to $250 \mathrm{~V} \mathrm{AC}, 5$ to 30 V DC
10 mA
15 mA or less
$2 \mathrm{~A}(24 \mathrm{~V} \mathrm{DC}, 240 \mathrm{~V} \mathrm{AC})$
5 A
15 ms (max)
15 ms (max)
None
None
Relay insulation
LED (green)
Not necessary
$20,000,000$ times (mechanical)
$200,000$ times (electrical: 2 A$)$
$1,500 \mathrm{~V}$ or more (external-internal)
500 V or more (external-external)
Removable type screw terminal block
(M3)

external connection

(6Relay output (8points / 16points expansion unit)

Item	Specification	Circuit diagram	
Rated load voltage	5 to 250 V AC, 5 to 30 V DC		
Minimum switching current	1 mA		
Leak current	15 mA or less		
Maximum load current	$2 \mathrm{~A}(24 \mathrm{~V}$ DC, 240 V AC)		
	5 A		
Output response time	15 ms (max)		10
	15 ms (max)		$\left.\bigcirc\right\|_{0} ^{0} 0$
Surge removing circuit	None		I
Fuse	None		
Insulation system	Relay insulation		
Output display	LED (green)		
Externally supplied power (for driving the relays)	Not necessary		
Contact life	20,000,000 times (mechanical) 200,000 times (electrical: 1.5 A)		
Insulation	$1,500 \mathrm{~V}$ or more (external-internal) 500 V or more (external-external)		
External connection	Removable type screw terminal block (M3)		

(7)DC Transistor output: LCDC-Low Current

(8DC Transistor output: HCDC-High Current

Item	Specification	Circuit diagram	
Rated load voltage	24/12 V DC (+10 \%, -15 \%)	Sink type Vo	
Minimum switching current	1 mA		
Leak current	0.1 mA (max)		
Maximum 11 circuit	1A/24 V DC		Source type Vo
load current 1 common	3 A		
Output response time	0.1 ms (max) 24 V DC 0.2A		
	0.1 ms (max) 24 V DC 0.2A		
Surge removing circuit	None		इ $\quad \mid \stackrel{\vdash}{\mapsto}$
Fuse	None		
Insulation system	Photocoupler insulation		
Output display	LED (green)		
Externally supplied power	30 to 12 V DC		
Insulation	$1,500 \mathrm{~V}$ or more (external-internal) 500 V or more (external-external)		
Output voltage drop	0.3 V DC (max)		
External connection	Removable type screw terminal block (M3)		

(9)DC Transistor output (ESCP type): LCDC-Low Current

(10DC Transistor output (ESCP type): HCDC-High Current

Item	
Rated load voltage	
Minimum switching current	
Leak current	
Maximum load current	1 circuit
Output response time	OFF \rightarrow ON
	ON OFF
Surge removing circuit	
Fuse	
Insulation system	
Output display	
Externally supplied power	
Insulation	
Output voltage drop	
External connection	

Specification
24/12 V DC (+10 \%, -15 \%)
10 mA
0.1 mA (max)
1 A
3 A
0.05 ms (max) 24 V DC 0.2A
0.05 ms (max) 24 V DC 0.2A
None
None
Photocoupler insulation
LED (green)
30 to 12 V DC
$1,500 \mathrm{~V}$ or more (external-internal) 500 V or more (external-external)
0.3 V DC (max)
Removable type screw terminal block (M3)

Circuit diagram

Source type (ESCP)

(11)DC Transistor output (Source type)

Item	Specification
Rated load voltage	$\begin{gathered} 24 / 12 / 5 \vee D C \\ 24 \vee D C+20 \%,-80 \% \end{gathered}$
Minimum switching current	1 mA
Leak current	0.1 mA (max)
Maximum load current	0.75 A/24 V DC 0.5 A/12 V DC 0.25 A/5 V DC
	0.75 A
Output response time	0.1 ms (max) 24 V DC 0.2 A
	0.1 ms (max) 24 V DC 0.2 A
Surge removing circuit	None
Fuse	None
Insulation system	Photocoupler insulation
Output display	LED (green)
Externally supplied power to V terminal	30 to 16 V DC
Insulation	$1,500 \mathrm{~V}$ or more (external-internal) 500 V or more (external-external)
Output voltage drop	0.3 V DC (max)
External connection	Removable type screw terminal block (M3)

Circuit diagram

(12)DC Transistor output

| Item | Specification |
| :--- | :---: | :---: |
| sink type | |

(13)AC output (SSR)

Item	Specification
Rated voltage	$100 / 240 \mathrm{~V} \mathrm{AC}$
Output voltage	$100-15 \%$ to $240+10 \% \mathrm{~V} \mathrm{AC}$
	$50-5 \%$ to $60+5 \% \mathrm{~Hz}$

-

*1: It is necessary to repair the module if the load short-circuits and causes the fuse to melt. Note that the fuse cannot be replaced by users.

Analogue Input Specifications

Analogue Output Specifications

Module type	23 points type module	Analog expansion unit
Output channel	1 ch	2 ch
Output range	0-10V (10.24V max.)	0-10V (10.24V max.)
	0-20mA (20.48mA max.)	0-20mA (20.48mA max.)
	-	4-20mA (20.38mA max.)
Resolution	12 bits	
Accuracy	± 1 \% of full scale	
Current output	10 to 500Ω Maximum 2,000 pF Maximum 1 H	
Allowable load		
Output allowable capacity		
Output allowable inductance		
Voltage output		
Allowable load	Minimum $10 \mathrm{k} \Omega$ Maximum $1 \mu \mathrm{~F}$	
Output allowable impedance		

High-Speed Gounter Specifications

Since 10 points type does not have input X6, counter channel is up to 3 ch.

PWW OutputPulse Train Output Specifications

	23-point and 28-point type Relay Output	10/14/28-point Transistor Output
Available outputs	Y100 (optional)	Y100-Y103 (optional)
Load voltage	5/12/24 V	$12 / 24 \mathrm{~V}$
Minimum load current	1 mA	
PWM max. output frequency *1	2 kHz total	
Pulse train max. output frequency ${ }^{\text {*1 }}$	5 kHz total	

1: Relay outputs cannot keep up with high frequencies; these outputs should be used at the operating frequency upon confirmation.

RTD Input Specifications

*Note : The max. cable length is 100 m , however it depends on noise environment or other conditions.

Potentiometer Analogue Input Specilications

Number of potentiometer inputs
Input range
Resolution
Input filter

```
    2
0-1023 (H0-H3FF)
    10 bits
    By user settings
```


Interiupt Input Specilications

Input that can be used

Input voltage	ON
	OFF

$\mathrm{X} 1, \mathrm{X} 3, \mathrm{X} 5, \mathrm{X} 7$ (by user settings)

15 V
5 V

20/40/64 points type InputOutput Specifications

20/40/64-point type CPU Specifications

Specification	Item	
Control Spec.	CPU	
	Processing system	
	Processing	Basic Application
	Speed	
	User program memory	
Operation Spec.	Instruction language	Basic instructions
		Arithmetic instructions Application instructions
	Ladder	Basic
		Arithmetic instructions Application instructions
I/0 processing Spec.	External I/O	I/O processing system Max. number of points
	Internal output	Bit
		Word
		Special Bit
		Word
		BitWord shared
	Timer / counter	Number of points
		Timer set value
		Counter set value
	Edge detection	
Peripheral equipment	Program system	
	Peripheral unit	
Maintenance functions	Self-diagnosis	

20/40/64-point type
32-bit RISC processor
Stored program cyclic system
0.9 ss / instruction
Several $10 \mu \mathrm{Hs} /$ instruction $^{16 \mathrm{ksteps} \text { max. (FLASH memory) }}$
39 types such as LD, LDI, AND, ANI, OR, ORI, ANB, ORB, OUT,
MPS, MRD, MPP, etc.
*1 The same numbers cannot be shared by the timer and the counter. TD is 0 to 255 .
*2 Only timers numbered 0 to 63 can use 0.01 s for their time base.
20/40/64 points Basic unit Input/Output specification

Type	Model Name	Power		Input	Input Point	Output	Output Point				
		24V DC	$\begin{gathered} 100 / 200 \mathrm{~V} \\ \mathrm{AC} \end{gathered}$		24V DC		Relay Output	Transistor Output		Transistor Output(source ESCP) Low Current High Current	
					(1)		(2)	(3)	(4)	(5)	(6)
20 Points	EH-A20DR		\bigcirc	DC $24 \mathrm{~V} \times 12$	12 (3)[4,4,4]	Relay $\times 8$	$\begin{gathered} 8(5) \\ {[1,4,1,1,1]} \end{gathered}$				
	EH-D20DR	\bigcirc		DC $24 \mathrm{~V} \times 12$	12 (3)[4,4,4]	Relay $\times 8$	$\begin{gathered} 8(5) \\ {[1,4,1,1,1]} \end{gathered}$				
	EH-D20DT	O		DC $24 \mathrm{~V} \times 12$	12 (3) $[4,4,4]$	Transistor $\times 8$ (sink)		4 (1)	4 (1)		
	EH-D20DTPS	\bigcirc		DC $24 \mathrm{~V} \times 12$	12 (3)[4,4,4]	Transistor ESCP) $\times 8$		4 (1)		4 (1)	
40 Points	EH-A40DR		\bigcirc	DC $24 \mathrm{~V} \times 24$	24 (2) [8,16]	Relay $\times 16$	$\begin{gathered} 16(6) \\ {[6,2,4,2,2, * 1]} \end{gathered}$				
	EH-D40DR	\bigcirc		DC $24 \mathrm{~V} \times 24$	24 (2)[8,16]	Relay $\times 16$	$\begin{gathered} 16(6) \\ {\left[6,2,4,2,2,{ }^{*} 1\right]} \end{gathered}$				
	EH-D40DT	\bigcirc		DC $24 \mathrm{~V} \times 24$	24 (2)[8,16]	Transistor $\times 16$ (sink)		4 (2)[4]**	12 (2)[12]*1		
	EH-D40DTPS	\bigcirc		DC $24 \mathrm{~V} \times 24$	$24(2)[8,16]$	$\begin{aligned} & \text { Transistor (source } \\ & \text { ESCP) } \times 16 \end{aligned}$		4 (2)[4]**		12 (2)[12]*1	
64 Points	EH-A64DR		\bigcirc	DC $24 \mathrm{~V} \times 40$	40 (2) [16,24]	Relay $\times 24$	$\begin{gathered} 24(9) \\ {[6,2,4,2,2,2,2,2,2]} \end{gathered}$				
	EH-D64DR	\bigcirc		DC $24 \mathrm{~V} \times 40$	40 (2) [16,24]	Relay $\times 24$	$\begin{gathered} 24(9) \\ {[6,2,4,2,2,2,2,2,2]} \end{gathered}$				
	EH-D64DT	\bigcirc		DC $24 \mathrm{~V} \times 40$	40 (2)[16,24]	Transistor $\times 24$ (sink)		4 (2)[4]**	$20(6)[8,8,4]^{*} 1$		
	EH-D64DTPS	\bigcirc		DC $24 \mathrm{~V} \times 40$	40 (2)[16,24]	Transistor (source ESCP) $\times 24$		4 (2)[4]*1		$16(4)[8,8]^{*} 1$	4 (2)[4]**

The value of () : number of common. The value of [] : number of I/O points to each common.
*1: Although it is two common to the number of outputs of eath common, it connects inside.

Type	Model Name	Power		Input	Input Point	Output	Output Point				
		24V DC	$\begin{gathered} 100 / 200 \mathrm{~V} \\ \mathrm{AC} \end{gathered}$		24V DC		Relay Output	Transistor Output		Transistor Output(source ESCP)	
					(7)		(8)	(3)	(4)	(5)	(6)
64 Points	EH-A64EDR		\bigcirc	DC $24 \mathrm{~V} \times 40$	$\begin{gathered} 40(2) \\ {[16,24]} \end{gathered}$	Relay x 24	$\begin{gathered} 24(9) \\ {[6,2,4,2,2,2,2,2,2]} \end{gathered}$				
	EH-D64EDR	\bigcirc		DC $24 \mathrm{~V} \times 40$	$\begin{gathered} 40(2) \\ {[16,24]} \end{gathered}$	Relay x 24	$\begin{gathered} 24(9) \\ {[6,2,4,2,2,2,2,2,2]} \end{gathered}$				
	EH-D64EDT	\bigcirc		DC $24 \mathrm{~V} \times 40$	$\begin{aligned} & 40(2) \\ & {[16,24]} \end{aligned}$	Transistor $\times 24$ (sink)		4 (2)[4]*1	$20(6)[8,8,4]^{* 1}$		
	EH-D64EDTPS	\bigcirc		DC $24 \mathrm{~V} \times 40$	$\begin{gathered} 40(2) \\ {[16,24]} \end{gathered}$	$\begin{aligned} & \text { Transistor (source } \\ & \text { ESCP) } \times 24 \end{aligned}$		4 (2)[4]*1		16 (4)[8,8]*1	4 (2)[4]*1

Item	
Input voltage	
Allowable input voltage range	
Input impedance	
Input current	
Operating voltage	ON voltage
	OFF voltage
Input lag	OFF \rightarrow ON
	ON \rightarrow OFF
Polarity	
Insulation system	
Input display	
External connection	

Specification	
X0, X2, X4, X6	Except the following
24 V DC	
0 to 30V DC	
Approx. $2.7 \mathrm{k} \Omega$	Approx. $4.7 \mathrm{k} \Omega$
Approx. 8 mA	Approx.4.8 mA
$18 \mathrm{VDC}($ min $) / 4.5 \mathrm{~mA}$ (max)	$18 \mathrm{VDC}($ min) $/ 3.3 \mathrm{~mA}($ max $)$
$5 \mathrm{VDC}($ min) $/ 1.8 \mathrm{~mA}($ max $)$	$5 \mathrm{VDC}($ max $) / 1.6 \mathrm{~mA}($ max $)$
2 to 20 ms (user	setup is possible.)
2 to 20 ms (user	setup is possible.)
None	
Photocoupler insulation	
LED (Green)	
Removable type screw	w terminal block (M3)

Internal Circuit

0

(2)Relay output

Item		Specification
Rated load voltage		5 to 250 V AC, 5 to 30 V DC
Minimum switching current		10 mA (5VDC)
Maximum	1 circuit	2 A (24V DC, 240V AC)
load current	1 common	5A
Output	OFF \rightarrow ON	15 ms (max)
response time	ON \rightarrow OFF	$15 \mathrm{~ms} \mathrm{(max})$
Surge removal circuit		None
Fuse		None
Insulation system		Relay insulation
Output display		LED (Green)
Externally supplied power (For driving relays)		Not used
Contact life ${ }^{\text {*1 }}$		20,000,000 times (mechanical) 200,000 times (electrical : 2A)
Insulation		$1,500 \mathrm{~V}$ or more (external - internal) 500 V or more (external - external)
External connection		Removable type screw terminal block (M3)

(3)DC Transistor output

Item	Specification $24 / 12 \mathrm{~V} \mathrm{DC}$ $(+10 \%,-15 \%$
Rated load voltage	10 mA

(4)DC Transistor output

Item	
Rated load voltage	
Minimum switching current	
Leak current	
Maximum load current	1 circuit
1 common	
Output response time	OFF \rightarrow ON
Surge removing circuit	
Fuse	
Insulation system	
Output display	
Externally supplied power	
Insulation	
Output voltage drop	
External connection	

Specification
24/12 V DC (+10 \%, -15 \%)
10 mA
0.1 mA (max)
0.5 A
64-point type : $3 \mathrm{~A}, 40$-point type : 5 A , 20-point type : 2 A ,
0.1 ms (max) 24 V DC 0.2A
0.1 ms (max) 24 V DC 0.2A
None
None
Photocoupler insulation
LED (green)
12 to 30 V DC
$1,500 \mathrm{~V}$ or more (external-internal) 500 V or more (external-external)
0.3 V DC (max)
Removable type screw terminal block (M3)

Circuit diagram

Sink type

■ (5)DC Transistor output (ESCP type) ... LCDC-Low Current

© (6DC Transistor output (ESCP type) ... HCDC-High Current

Circuit diagram

Source type (ESCP)

(7)DC input (64 points expansion unit)

Item		Specifi	cation	Circuit diagram
		X0, X2, X4, X6	Except the left	
Input voltage		24V DC		
Allowable input voltage range		0 to 30V DC		
Input impedance		Approximately $2.7 \mathrm{k} \Omega$	Approximately $4.7 \mathrm{k} \Omega$	
Input current		8 mA typical	4.8 mA typical	
Operating voltage	ON voltage	18 VDC (min) / 4.5mA (max)	$18 \mathrm{VDC}(\mathrm{min}) / 3.3 \mathrm{~mA}(\mathrm{max})$	
	OFF voltage	$5 \mathrm{VDC}($ min) $/ 1.8 \mathrm{~mA}$ (max)	$5 \mathrm{VDC}(\max) / 1.6 \mathrm{~mA}(\max)$	
Input lag	OFF \rightarrow ON	2 ms or less		
	ON \rightarrow OFF	2 ms or less		
Polarity		None		
Insulation system		Photocoupler insulation		
External connection		Removable type screw terminal block (M3)		

8Relay output (64 points expansion unit)

Item	
Rated load voltage	
Maximum 1 circuit load current	1 common
Output	OFF \rightarrow ON
response time	ON \rightarrow OFF
Surge removing circuit	
Fuse	
Insulation system	
External connection	
Contact life	
Insulation	

Specification
5 to $250 \mathrm{~V} \mathrm{AC}, 5$ to 30 VDC
$2 \mathrm{~A} \mathrm{(24V} \mathrm{DC,240V} \mathrm{AC)}$
$15 \mathrm{~ms}(\max)$
$15 \mathrm{~ms}(\max)$
None
None
Relay insulation
Removable type screw terminal block (M3)
$20,000,000$ times (mechanical)
200,000 times (electrical : 1.5A)
1500 V or more (external - internal)
500 V or more (external - external)

Circuit diagram

High speed counter

Item		Single	2-phase
Choices for counter input channels		X0, X2, X4, X6	Use X0 and X2 in pair / Use X4 and X6 in pair
Input voltage	ON	18 V	
	OFF	5 V	
Width of count pulse		$10 \mu \mathrm{~s}$	$17 \mu \mathrm{~s}$
Maximum count frequency		100 kHz	60 kHz
Count register		16 bits / 32 bits (depend on operation mode)	
Coincidence output		Possible (or assigned as standard output)	
ON / OFF preset		Possible (or assigned as standard output)	
Upper / lower limit setting		Impossible (16 bits counter : ring counter ... 0 to 65,535)(32 bits counter : ring counter ... 0 to $4,294,967,295$)	
Pre-load / Strobe		Possible (or assigned as standard input)	

Pulse train output / PWW output

Item	Specification
Available outputs	Y100-Y103 (optional)
Load voltage	12 / 24 V
Minimum load current	1 mA
PWM max. output frequency	each channel $65,535 \mathrm{~Hz}$
Pulse train max. output frequency	each channel $65,535 \mathrm{~Hz}$

Interiupt Input Specifications

Positioning expansion unit

Features

- Positioning control or speed control is enabled by pulse train output (max. 2Mpps) if the stepping motor or servo is connected.
- 2-axes can be controlled in one positioning expansion unit. There is no interpolation function.
- 2 positioning expansion units can be connected to one basic unit.
Combination other expansion unit is also possible.
- Operating information that can store with 2 axes is 256 data. For these operating information, max. 499 continuing operations in one axis.
- Modbus RTU is used for the communication protocol. The positioning expansion unit can work without a basic unit using communication of modbus RTU.
- The tool to be able to set various parameters easily was prepared.

Note : Positioning expansion unit is supported by 20/23/28/40/64 basic unit.

Basic unit produced before March 2008 cannot be used for expansion unit.

Functional specifications

Item	
Number of axes	
Maximum velocity	
Positioning system	Move type
	Position rollover
	Positioning instruction unit
	Speed instruction range *1
	Acceleration and deceleration
	Dwell time
	Acc/Dec rate *2
	Backlash revision
	Range
	Pulse output type
	Pulse output method
Positioning data	Number of memorable data
	Setting method
Operation mode	
Homing function	
Manual (JOG) operation	
Auto operation	
Feedrate override function	
//0 assignment	
Communication function *3	Protocol
	Transmission speed

Specifications
2 axes
2M pulses/s
(1) Absolute + Increment method (2) Increment method
Linear, rotation
Pulse, $\propto \mathrm{m}$, inch, degree, Free-form
1 to 2M pulse/s
Linear Acc/Dec, S-shaped Acc/Dec
0 to $32,768 \mathrm{~ms}$ (1 ms unit)
1 to $50,000,000$ (pulse $/ \mathrm{s}^{2}, \propto \mathrm{~m} / \mathrm{s}^{2}$, inch $/ \mathrm{s}^{2}$, degree $/ \mathrm{s}^{2}$, Free-form $/ \mathrm{s}^{2}$)
0 to 65,535 (pulse, $\propto \mathrm{m}$, inch, degree, Free-form)
+2,147,463,647 to $-2,147,463,648$ pulse
(1) Pulse train [CW / CCW]
Line driver output
256 (non-volatility)
Sequence program from PLC and personal computer
Auto operation, manual operation
Free homing, Low-speed homing, High-speed homing 1 (OFF edge), High-speed homing 2 (marker stop)
Pulse output by manual input signal or command
Pulse output according to profile data registered with sequence table.
1 to 100\% (Speed scale rate, 1\% unit)
Word X 8W / Word Y 8W (Positioning expansion unit uses assignment for two expansion units.)
Modbus RTU
9600, 19200, 57600, 115200bps

[^3]Number of I/O No. (Input/Output register) become either of four pattern shown below.

Input register is WXu00-Wxu07(u:unit No.). Output register is WYu'00 - WYu'07(u':unit No.).

Thermocouple Expansion Unit

Input Specifications

Item	
No. of channels	
Supported thermocouple	
Each type of specification (Ambient temp. 0 to $55{ }^{\circ} \mathrm{C}$)	Type
	K
	J
	E
	S
	T
	B
	N
	50 mV
	100mV
Conversion data	
Isolation B B ci	Between channels
	Between channel and internal circuit
Cold junction temperature input range	
Cold junction temperature compensation	
Diagnostic error (Over flow or breaking wire)	
Conversion time (4 channels all)	
External wiring length (*2)	

Specification			
4 channels			
Type K, J, E, S, T, B, N			
Accuracy guaranteed range	accuracy (*1)	Resolution	Input range
-200 to $1200{ }^{\circ} \mathrm{C}$	$\pm 0.4 \%$ (FS)	$0.1{ }^{\circ} \mathrm{C} / 0.2$	-270 to $1370{ }^{\circ} \mathrm{C}$
-40 to $750{ }^{\circ} \mathrm{C}$	$\pm 0.3 \%$ (FS)	$0.1{ }^{\circ} \mathrm{C} / 0.2$	-270 to $1200{ }^{\circ} \mathrm{C}$
-200 to $900{ }^{\circ} \mathrm{C}$	$\pm 0.3 \%$ (FS)	$0.1{ }^{\circ} \mathrm{C} / 0.2$	-270 to $1000{ }^{\circ} \mathrm{C}$
0 to $1600{ }^{\circ} \mathrm{C}$	$\pm 1.0 \%$ (FS)	$1.0{ }^{\circ} \mathrm{C} / 2.0$	-50 to $1760{ }^{\circ} \mathrm{C}$
-200 to $350{ }^{\circ} \mathrm{C}$	$\pm 0.8 \%$ (FS)	$0.1{ }^{\circ} \mathrm{C} / 0.2$	-270 to $400{ }^{\circ} \mathrm{C}$
600 to $1700{ }^{\circ} \mathrm{C}$	$\pm 1.0 \%$ (FS)	$1.0{ }^{\circ} \mathrm{C} / 2.0$	0 to $1820{ }^{\circ} \mathrm{C}$
-200 to $1200{ }^{\circ} \mathrm{C}$	$\pm 0.4 \%$ (FS)	$0.1{ }^{\circ} \mathrm{C} / 0.2$	-270 to $1300{ }^{\circ} \mathrm{C}$
-50 to 50 mV	$\pm 0.5 \%$ (FS)	0.01 mV	-50 to 50 mV
-100 to 100 mV	$\pm 0.5 \%$ (FS)	0.02 mV	-100 to 100mV
15 bits + sign ($0.1{ }^{\circ} \mathrm{C} / 0.1 / 0.01 \mathrm{mV}$)			
Not isolated			
Isolated by photo coupler			
-20 to $80{ }^{\circ} \mathrm{C}$			
$\pm 2{ }^{\circ} \mathrm{C}$ or less (ambient temp. 0 to $55{ }^{\circ} \mathrm{C}$)			
Conversion data: H7FFF (LED blinks at error channel)			
563 msec (thermocouple) / 141 msec (mV)			
Max. 100 m			

 condition of 10 minutes after power ON.
*2: Note : The max. cable length is 100 m , however it depends on noisy environment or other conditions.

Analog output Specifications (EH-D6ETC only)

Item	Specification
No. of analog output	2 channels, single output
Output Ranges (Selected by DIP switch)	$0-10 \mathrm{~V}(10.23 \mathrm{~V} \mathrm{Max.)/0-20mA(20.48mA} \mathrm{Max)}. \mathbf{1 2 ~ B i t s}$
Resolution	$\pm 1 \%$ of full scale over temp. range
Accuracy	8.8 ms
Conversion time	Output load range and max. voltage Output capacitance and inductance
Current outputs	10 to $500 \Omega, 10 \mathrm{~V}$
Voltage outputs	Output load range Output load inductance

20/40/64 points type Option hoard Specilications

No.	Type	
1	EH-OBMEM	Memory board
2	EH-OB232	RS-232C Communication board
3	EH-OB485	RS-422/485 Communication board
4	EH-OBUSB	USB board

Backup of a user program and the special internal output for a setup of special function. RS-232C serial communication port, Analog input 2ch
RS-422 / 485 serial communication port, Analog input 2ch
USB communication port

(1)Memory board

\section*{| Item | Spec |
| :--- | ---: |
| Memory capacity | 16 ksteps |
| Size | 19×41.5 |
| (2)RS-232C Communication board | |
| RS-232C port Specification | |}

Item	Specification
Number of port	1
Cable length	Max. 15 m
Communication system	Half duplex
Baud rate	$4,800-38,400$ pos(Dedicated port)300-57,600bos(General-purpose port)
Connection mode	Hi-Protocol(procedure1/2) /
Non-Protocol	
Protocol	

Analog Input Specification

Item	Specification
No. of input	2 ch.
Input range	$0-10 \mathrm{~V}(10.24 \mathrm{~V}$ max. $)$
Accuracy	$\pm 1 \%$ of full cale
Resolution	10 bits
Input impedance	$100 \mathrm{k} \Omega$
Isolation between channels	Not isolated
Isolation between CPU and analog signal	Not isolated

(3)RS-422/485 Communication board RS-422 / 485 port Specification

Item	Specification
Number of port	1
Cable length	Max. 500 m
Communication system	Half duplex
Baud rate	$4,800-38,400$ bos(Dedicated port) 300 $-57,600$ pos(General-purpose port)
Connection mode	$1: \mathrm{N}($ Max.
Protocol	Hi-Protocol(procedure1/2) $/$ /

Analog Input Specification

Item	Specification
No. of input	2 ch.
Input range	$0-10 \mathrm{~V}(10.24 \mathrm{~V}$ max. $)$
Accuracy	$\pm 1 \%$ of full cale
Resolution	10 bits
Input impedance	$100 \mathrm{k} \Omega$
Isolation between channels	Not isolated
Isolation between CPU and analog signal	Not isolated

(4)USB board

Item	Specification
Function	USB 232C conversion
USB version	Correspond USB 2.0
Connector	Straight B type
Power	BUS power
Connection mode	$1: 1$
COM port Driver	Download from FTDI

Since this board is a converter from RS-232C to USB, the USB port of PC must be regarded as RS-232C port. For this reason, COM port driver is necessary for your PC. Please download the driver from following URL and install so that USB port works as serial port.

IO ASSIENIMENTI

Basic unit / expansion unit

Unit			I/O Classification	10 - point type	14 - point type	20 - point type	23 - point type	28 - point type	40 - point type	64 - point type
Basic Unit	Digital	Input	Slot 0 : X48	X0~5	$\mathrm{XO} \sim 7$	$\mathrm{XO} \sim 11$	$\mathrm{XO} \sim 12$	X0~15	$\mathrm{XO} \sim 23$	X0~39
		Output	Solt 1 : Y32	Y100~103	Y100~105	Y100~107	Y100~109	Y100~111	Y100~115	Y100~123
			Slot 2 : empty 16	-	-	-	-	-	-	-
	Analog	Input	Slot 3 : X4W	-	-	-	WX30~31	-	-	-
		Output	Slot 4 : Y4W	-	-	-	WY40	-	-	-
Expansion Unit 1	Digital	Input	Unit 1 / Slot0 : B1/1	-	X1000~1015					
		Output		-	Y1016~1031					
	Analog	Input	Unit 1 / Slot0 :FUN0	-	WX101~10					
		Output		-	WY106~107					
Expansion Unit 2	Digital	Input	Unit 2 / Slot0 : B1/1	-	X2000~2015					
		Output		-	Y2016~2031					
	Analog	Input	Unit 2 / Slot0 :FUN0	-	WX201~204					
		Output		-	WY206~207					
Expansion Unit 3	Digital	Input	Unit 3 / Slot0 : B1/1	-	X3000~3015					
		Output		-	Y3016~3031					
	Analog	Input	Unit 3 / Slot0 :FUNO	-	WX301~304					
		Output		-	WY306~307					
Expansion Unit 4	Digital	Input	Unit 4 / Slot0 : B1/1	-	X4000~4015					
		Output		-	Y4016~4031					
	Analog	Input	Unit 4 / Slot0 :FUNO	-	WX401~404					
		Output		-	WY406~407					

64-points expansion unit

Unit			I/O Classification	10 - point type	14 - point type	20 - point type	23 - point type	28 - point type	40 -point type	64 - point type
Expansion Unit 1	Digital	Input	Slot 0 : X48	-	X1000~1039					
			Solt 1 : Y32	-	Y1100~1123					
			Slot 2 : empty 16	-	-	-	-	-	-	-
Expansion Unit 2	Digital	Input	Slot 0 : X48	-	X2000~2039					
		Output	Solt 1 : Y32	-	Y2100~2123					
			Slot 2 : empty 16	-	-	-	-	-	-	-
Expansion Unit 3	Digital	Input	Slot 0 : X48	-			X30	0~3039		
		Output	Solt 1 : Y32	-	Y3100~3123					
			Slot 2 : empty 16	-	-	-	-	-	-	-
Expansion Unit 4	Digital	Input	Slot 0 : X48	-	$\mathrm{X} 4000 \sim 4039$$\mathrm{Y} 4100 \sim 4123$					
		Output	Solt 1 : Y32	-						
			Slot 2 : empty 16	-	-	-	-	-	-	-

High speed counter, Pulse train output and PWM output of MICRO-EH

MICRO-EH can perform easily simple positioning control by Pulse train output, and speed control by the PWM output. - Simple positioning control

With DC (transistor) output type, a pulse train output is possible.
MICRO-EH can perform positioning control of a stepping motor etc. by combining a High-speed counter input and a pulse train output.

With using PWM output function, MICRO-EH can perform speed control of DC motor instead of conventional control by the analog output.

MICRO-EH

No.	Classification	Model Name	Specifications				Weight(g)	Power Consumption (A)			Standard Compliance			
							100 V AC	264 V AC	24 V DC					
			Power	Input	Output	Remarks		Normal	Normal	Normal	CE	UL	C-Tick	
1	10 Points	EH-D10DT	24V DC	24 V DC $\times 6$	Transistor $\times 4$	Sink		200	-	-	0.12	\bigcirc	O	O
2		EH-D10DTP	24V DC	24 V DC $\times 6$	Transistor $\times 4$	Source	200	-	-	0.12	\bigcirc	\bigcirc	\bigcirc	
3		EH-D10DR	24V DC	24 V DC $\times 6$	Relay $\times 4$		200	-	-	0.12	\bigcirc	\bigcirc	\bigcirc	
4	14 Points	EH-D14DT	24V DC	24 V DC $\times 8$	Transistor $\times 6$	Sink	300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
5		EH-D14DTP	24V DC	24 V DC $\times 8$	Transistor $\times 6$	Source	300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
6		EH-D14DTPS	24V DC	24 V DC $\times 8$	Transistor x 6 (short circuit protection)	Source	300	-	-	0.16	\bigcirc	-	\bigcirc	
7		EH-D14DR	24 V DC	24 V DC $\times 8$	Relay $\times 6$		300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
8		EH-A14DR	100/200 V AC	24 V DC $\times 8$	Relay $\times 6$		400	0.1	0.06	-	\bigcirc	\bigcirc	\bigcirc	
9		EH-A14AS	100/200 V AC	AC $\times 8$	SSR $\times 6$		380	0.1	0.06	-	O	\bigcirc	O	
10	20 Points	EH-D20DT	24V DC	24 V DC $\times 12$	Transistor $\times 8$	Sink	450	-	-	0.18	\bigcirc	\bigcirc	\bigcirc	
11		EH-D20DTPS	24V DC	24 V DC $\times 12$	Transistor x 8 (short circuit protection)	Souse	450	-	-	0.18	\bigcirc	\bigcirc	\bigcirc	
12		EH-D20DR	24 V DC	24 V DC $\times 12$	Relay $\times 8$		470	-	-	0.22	\bigcirc	\bigcirc	\bigcirc	
13		EH-A20DR	100/200V AC	24 V DC $\times 12$	Relay $\times 8$		550	0.12	0.06	-	\bigcirc	\bigcirc	\bigcirc	
14	23 Points	EH-D23DRP	24V DC	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \times 13 \\ & \text { Analog } \times 2 \end{aligned}$	Relay $\times 9$ Transistor x 1 Analog $x 1$	Source	500	-	-	0.3	\bigcirc	\bigcirc	\bigcirc	
15		EH-A23DRP	100/200 V AC	$\begin{aligned} & 24 \mathrm{~V} D \mathrm{D} \times 13 \\ & \text { Analog } \times 2 \end{aligned}$	Relay $\times 9$ Transistor $\times 1$ Analog $x 1$	Source	600	0.2	0.06	-	\bigcirc	\bigcirc	\bigcirc	
16		EH-A23DR	100/200 V AC	$\begin{aligned} & 24 \mathrm{~V} D C \times 13 \\ & \text { Analog } \times 2 \end{aligned}$	$\begin{aligned} & \text { Relay } \times 10 \\ & \text { Analog } \times 1 \end{aligned}$		600	0.2	0.06	-	\bigcirc	-	\bigcirc	
17	28 Points	EH-D28DT	24V DC	24 V DC $\times 16$	Transistor x 12	Sink	500	-	-	0.2	\bigcirc	\bigcirc	\bigcirc	
18		EH-D28DTP	24V DC	24 V DC $\times 16$	Transistor $\times 12$	Source	500	-	-	0.2	\bigcirc	\bigcirc	\bigcirc	
19		EH-D28DTPS	24V DC	24 V DC $\times 16$	Transistor x 12 (short circuit protection)	Source	500	-	-	0.2	\bigcirc	\bigcirc	\bigcirc	
20		EH-D28DRP	24V DC	24 V DC $\times 16$	Relay x 11 Transistor $\times 1$	Source	500	-	-	0.3	\bigcirc	\bigcirc	\bigcirc	
21		EH-D28DR	24 V DC	24 V DC $\times 16$	Relay $\times 12$		500	-	-	0.3	\bigcirc	\bigcirc	\bigcirc	
22		EH-A28DRP	100/200 V AC	24 V DC $\times 16$	Relay $\times 11$ Transistor x 1	Source	600	0.2	0.06	-	\bigcirc	\bigcirc	\bigcirc	
23		EH-A28DR	100/200 V AC	24 V DC $\times 16$	Relay x 12		600	0.2	0.06	-	\bigcirc	\bigcirc	\bigcirc	
24		EH-A28AR	100/200 V AC	AC $\times 16$	Relay $\times 12$		500	0.2	0.06	-	\bigcirc	\bigcirc	\bigcirc	
25		EH-A28AS	100/200 V AC	AC $\times 16$	SSR $\times 12$		600	0.2	0.06	-	\bigcirc	\bigcirc	\bigcirc	
26	40Points	EH-D40DT	24 V DC	24 V DC $\times 24$	Transistor $\times 16$	Sink	450	-	-	0.24	\bigcirc	\bigcirc	\bigcirc	
27		EH-D40DTPS	24V DC	24 V DC $\times 24$	Transistor x 12 (short circuit protection)	Souse	450	-	-	0.24	\bigcirc	\bigcirc	\bigcirc	
28		EH-D40DR	24 V DC	24 V DC $\times 24$	Relay $\times 16$		480	-	-	0.32	\bigcirc	\bigcirc	O	
29		EH-A40DR	100/200 V AC	24 V DC $\times 24$	Relay $\times 16$		560	0.15	0.08	-	\bigcirc	\bigcirc	\bigcirc	
30	64 Points	EH-D64DR	24V DC	24 V DC $\times 40$	Relay $\times 24$		640	-	-	0.5	\bigcirc	\bigcirc	\bigcirc	
31		EH-D64DT	24V DC	24 V DC $\times 40$	Transistor x 24	Sink	640	-	-	0.5	\bigcirc	\bigcirc	\bigcirc	
32		EH-D64DTPS	24V DC	24 V DC $\times 40$	Transistor x 24 (short circuit protection)	Source	640	-	-	0.5	\bigcirc	\bigcirc	\bigcirc	
33		EH-A64DR	100/200 V AC	24 V DC $\times 40$	Relay $\times 24$		720	0.4	0.2	-	\bigcirc	\bigcirc	\bigcirc	
34	8 Points Expansion unit	EH-D8ED	24V DC	24 V DC $\times 8$	-		260	-	-	0.07	\bigcirc	\bigcirc	O	
35		EH-D8ER	24V DC	-	Relay $\times 8$		280	-	-	0.06	\bigcirc	\bigcirc	\bigcirc	
36		EH-D8ETPS	24V DC	-	Transistor $\times 8$ (short circuit protection)	Source	260	-	-	0.03	\bigcirc	\bigcirc	\bigcirc	
37		EH-D8ET	24 V DC	-	Transistor $\times 8$	Sink	260	-	-	0.02	\bigcirc	\bigcirc	\bigcirc	
38		EH-D8EDR	24V DC	24 V DC $\times 4$	Relay $\times 4$		300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
39		EH-D8EDTPS	24V DC	24 V DC $\times 4$	Transistor x4 (short circuit protection)	Source	260	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
40		EH-D8EDT	24 V DC	24 V DC $\times 4$	Transistor $\times 4$	Sink	260	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
41	14 Points Expansion unit	EH-D14EDT	24V DC	24 V DC $\times 8$	Transistor $\times 6$	Sink	300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
42		EH-D14EDTP	24V DC	24 V DC $\times 8$	Transistor $\times 6$	Source	300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
43		EH-D14EDR	24V DC	24 V DC $\times 8$	Relay $\times 6$		300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
44		EH-D14EDTPS	24V DC	24 V DC $\times 8$	Transistor x 6 (short circuit protection)	Source	300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
45		EH-A14EDR	100/200 V AC	24 V DC $\times 8$	Relay $\times 6$		400	0.1	0.06	-	\bigcirc	\bigcirc	\bigcirc	
46	16 Points Expansion unit	EH-D16ED	24V DC	24 V DC $\times 16$	-		260	-	-	0.13	\bigcirc	\bigcirc	\bigcirc	
		EH-D16ER	24 V DC	-	Relay $\times 16$		300	-	-	0.11	\bigcirc	\bigcirc	O	
48		EH-D16ETPS	24V DC	-	Transistor x 16 (short circuit protection)	Source	260	-	-	0.04	\bigcirc	\bigcirc	\bigcirc	
49		EH-D16ET	24V DC	-	Transistor x 16	Sink	260	-	-	0.03	\bigcirc	\bigcirc	\bigcirc	
50	28 Points Expansion unit	EH-D28EDT	24 V DC	24 V DC $\times 16$	Transistor $\times 12$	Sink	500	-	-	0.2	\bigcirc	-	-	
51		EH-D28EDTP	24V DC	24 V DC $\times 16$	Transistor $\times 12$	Source	500	-	-	0.2	\bigcirc	\bigcirc	\bigcirc	
52		EH-D28EDTPS	24V DC	24 V DC $\times 16$	Transistor x 12 (short circuit protection)	Source	500	-	-	0.2	\bigcirc	\bigcirc	\bigcirc	
53		EH-D28EDR	24V DC	24 V DC $\times 16$	Relay $\times 12$		500	-	-	0.3	\bigcirc	\bigcirc	\bigcirc	
54		EH-A28EDR	100/200 V AC	24 V DC $\times 16$	Relay $\times 12$		600	0.2	0.06	-	\bigcirc	\bigcirc	\bigcirc	
55	64 Points Expansion unit	EH-A64EDR	100/200 V AC	24 V DC $\times 40$	Relay $\times 24$		720	0.2	0.1	-	\bigcirc	※	\bigcirc	
56		EH-D64EDR	24V DC	24 V DC $\times 40$	Relay $\times 24$		640	-	-	0.5	\bigcirc	※	\bigcirc	
57		EH-D64EDT	24 V DC	24 V DC $\times 40$	Transistor $\times 24$	Sink	640	-	-	0.4	\bigcirc	※	\bigcirc	
58		EH-D64EDTPS	24V DC	24 V DC $\times 40$	Transistor $\times 24$ (short circuit protection)	Source	640	-	-	0.4	\bigcirc	※	\bigcirc	

[^4]
MICRO-EH

No.	Classification	Model Name	Specifications				Weight(g)	Power Consumption (A)			Standard Compliance			
							100 V AC	264 V AC	24 V DC					
			Power	Input	Output	Remarks		Normal	Normal	Normal	CE	UL	C-Tick	
59	AnalogExpansion unit	EH-D6EAN	24V DC	Analog $\times 4$	Analog $\times 2$			300	-	-	0.16	\bigcirc	\bigcirc	O
60		EH-A6EAN	100/200 V AC	Analog $\times 4$	Analog x 2		400	0.1	0.06	-	\bigcirc	\bigcirc	\bigcirc	
61	RTD Expansion unit	EH-A6ERTD	100/200 V AC	RTD $\times 4$	Analog $\times 2$		400	0.1	0.06	-	\bigcirc	\bigcirc	\bigcirc	
62		EH-A4ERTD	100/200 V AC	RTD $\times 4$	-		400	0.1	0.06	-	\bigcirc	\bigcirc	\bigcirc	
63		EH-D6ERTD	24V DC	RTD $\times 4$	Analog x 2		300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
64		EH-D4ERTD	24V DC	RTD $\times 4$	-		300	-	-	0.16	\bigcirc	\bigcirc	\bigcirc	
65	Thermocouple Expansion unit	EH-D6ETC	24V DC	Thermocouple $\times 4$	Analog x 2		300	-	-	0.11	\bigcirc	\bigcirc	\bigcirc	
66		EH-D4ETC	24V DC	Thermocouple $\times 4$	-		300	-	-	0.07	\bigcirc	\bigcirc	\bigcirc	
67	PositioningExpansion unit	EH-D2EP	24 V DC	2 -axes positio	g, Pulse output: up to 2 MHz	released soon	440	-	-	0.26	\bigcirc	\bigcirc	O	
68		EH-A2EP	100/200 V AC	2 -axes positio	g, Pulse output: up to 2 MHz	released soon	520	0.12	0.06	-	\bigcirc	\bigcirc	\bigcirc	
69	Option board for 20/40/64-point type	EH-OB232	RS-232 Communication board with Analog Input 2ch (10bit)								\bigcirc	\bigcirc	\bigcirc	
70		EH-OBMEM	Memory board (16k steps)								\bigcirc	\bigcirc	\bigcirc	
71		EH-OB485	RS-422/485 Communication board with Analog Input 2ch (10bit)								\bigcirc	\bigcirc	\bigcirc	
72		EH-OBUSB	USB RS-232C conversion board								\bigcirc	\bigcirc	\bigcirc	
73	Expansion cable	EH-MCB10	1.0 m								n/a	n/a	n/a	
74		EH-MCB05	0.5 m								n/a	n/a	n/a	
75		EH-MCB01	0.1 m								n/a	n/a	n/a	
76	Lithium battery	EH-MBAT	For data memory back-up			For 2328-point type	-	-	-	-	n/a	n/a	n/a	
77		EH-MBATL	For data memory back-up (Long Type)			For 2044064-point type					n/a	n/a	n/a	
78		EH-MBATLC				For 23128-point type					n/a	n/a	n/a	
79	Programmingsoftware	HLW-PCRE	LADDER EDITOR for Windows ${ }^{\text {® }}$								n/a	n/a	n/a	
80		EH-MLWE	LADDER EDITOR MICRO for Winodws ${ }^{\text {® }}$								n/a	n/a	n/a	
81		HL-AT3E	LADDER EDITOR DOS version								n/a	n/a	n/a	
82	Connection cable	EH-vCB02	Direct connection between MICRO-EH/EH-150 and personal computer (2m)								n/a	n/a	n/a	
83		WVCB02H	Connection with personal computer, EH-RS05 is required. Adapter cable for WVCB02H								n/a	n/a	n/a	
84		EH-RS05									n/a	n/a	n/a	

*1: 1 piece of 0.1 m expansion cable is attached to each expansion unit
*2: Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.

General Specifications

Item	Specification			
Power supply type	$\begin{gathered} \text { AC } \\ \text { 100/110/120 V AC }(50 / 60 \mathrm{~Hz}), \\ 200 / 220 / 240 \mathrm{~V} \mathrm{AC}(50 / 60 \mathrm{~Hz}) \end{gathered}$		DC	
Power voltage			24 V DC	
Power voltage fluctuation	85 to 264 V AC wide range		19.2 to 30 V DC	
range Allowable momentary power failure	85 to 100 V AC: $100 \text { to } 264 \mathrm{~V} \mathrm{AC}$	For a momentary power failure of less than 10 ms , operation continues For a momentary power failure of less than 20 ms , operation continues	19.2 to 30 V DC	For a momentary power failure of less than 10 ms , operation continues
Operating ambient temp.	0 to $55^{\circ} \mathrm{C}$			
Storage ambient temp.	-10 to $75{ }^{\circ} \mathrm{C}$			
Operating ambient humidity	5 to $95 \% \mathrm{RH}$ (no condensation)			
Storage ambient humidity	5 to $95 \% \mathrm{RH}$ (no condensation)			
Vibration proof	Conforming to IEC (EN) 61131-2			
Noise resistance	O Noise voltage $1,500 \mathrm{Vpp}$ Noise pulse width $100 \mathrm{~ns}, 1 \mu \mathrm{~s}$ (Noise created by the noise simulator is applied across the power supply module's input terminals. This is determined by our measuring method.)Based on NEMA ICS 3-304Static noise: $3,000 \mathrm{~V}$ at metal exposed areaConforms with EN50081-2 and EN50082-2			
Supported standards	Conforms with UL, CE markings and C-TICK			
Insulation resistance Dielectric withstand voltage	$20 \mathrm{M} \Omega$ or more between the AC external terminal and the protection earth (PE) terminal (based on 500 V DC megger)			
Grounding	$1,500 \mathrm{~V} \mathrm{AC}$ for one minute between the AC external terminal and the protection earth (PE) terminal			
Environment used	Class D dedicated grounding (grounded by a power supply module)			
Structure	No corrosive gases and no excessive dirt			
Cooling	Attached on an open wall			
Specification	Natural air cooling			

DIMENSIONS

10-point type

20/40-point type

64-point type

[Unit : mm]

Germany

Hitachi Europe GmbH
Industrial Components \＆Equipment Group Am Seestern 18
D－40547 Düsseldorf
TEL：$\langle 49\rangle$（211）5283－0
FAX：〈49〉（211）5283－649
http：／／www．hitachi－eu．com／
http：／／www．hitachi－ds．com／

U．S．A

Hitachi America，Ltd．
Industrial Systems Division
50 Prospect Avenue
Tarrytown，NY 10591－4698
TEL：$\langle 1\rangle$（914）631－0600
FAX：$\langle 1\rangle$（914）631－3672
http：／／www．hitachi．us／

China

Hitachi East Asia Limited

4th Floor，North Tower
World Finance Centre，Harbour City
Canton Road，Tsim Sha Tsui，Kowloon
Hong Kong
TEL：〈852〉 2735－9218
FAX：〈852〉 2375－3192
Hitachi（China）Ltd．
18th Floor，Beijing Fortune Building，
5 Dong San Huan Bei Lu，
Chao Yang District，Beijing 100004，China
TEL：〈86〉（10）6590－8111
FAX：$\langle 86\rangle(10)$ 6590－8110
http：／／www．hitachi．com．cn／
Hitachi（Shanghai）Trading Co．，Ltd．
1408，Rui Jin Building，
No．205，Maoming Road（S）
Shanghai， 200020
TEL：〈86〉（21）6472－1002
FAX：$\langle 86\rangle$（21）6472－4990
http：／／www．hitachi．com．cn／

Hitachi East Asia Limited Taipei Branch
3rd Floor，Hung Kuo Building No． 167
Tun－Hwa North Road，Taipei（105），Taiwan
TEL：$\langle 886\rangle$（2）2718－8777
FAX：$\langle 886\rangle$（2）2718－8180

Singapore

Hitachi Asia Ltd．

Power \＆Industrial Systems Group
24 Jurong Port Road
\＃03－05，Office Block
CWT Distripark
Singapore 619097
TEL：〈65〉（6271）－6086
FAX：〈65〉（6278）－4521
http：／／www．hitachi．com．sg／

Thailand

Hitachi Asia（Thailand）Co．，Ltd．
18th Floor，Ramaland Building
952 Rama IV Road，Bangrak
Bangkok 10500
TEL：〈66〉（2）632－9292
FAX：〈66〉（2）632－9299
http：／／www．hitachi．co．th／

Australia

Hitachi Australia Pty Ltd．
Level 3， 82 Waterloo Road
NORTH RYDE NSW 2113
Australia
TEL：$\langle 61\rangle$（2）9888－4100
FAX：$\langle 61\rangle$（2）9888－4188
http：／／www．hitachi．com．au／

Printed in Japan（H）SI－E108V 0808

[^0]: ■EH-MCB01: For placement of an expansion unit next to a basic unit, 10 cm long
 (1 piece of 10 cm expansion cable is attached to each expansion unit.)
 ■EH-MCB05: For vertical arrangement of the MICRO-EH, 50 cm long
 EEH-MCB10: For more flexible arrangement, 1 m long

[^1]: *1: The same numbers cannot be used with the timer counter.
 *2: Only timers numbered 0 to 63 can use 0.01 s for their timer base.

[^2]: The value of (): number of common. The value of []:number of I/O points to each common.

[^3]: *1: Minimum unit for speed depends on "Max. velocity" set to the common parameter.
 2: Settable ranges for acceleration and deceleration depend on "Max. velocity" set to the common parameter.
 *3: Communication board for MICRO-EH (20/40/60-point types) is required for communication.

[^4]: $1: 1$ piece of 0.1 m expansion cable is attached to each expansion unit
 *2: Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.

