VARIABLE FREQUENCY DRIVE

SJ200
 Series

Intelligent Sensorless Vector Control

(\#) Hitachi Industrial Equipment Systems Co.,Ltd.

Compact, high-torque, fulbeatured drive,

 Hitachi's new technology inverter family is suitable for a wide High performance is now within your grasp.

High starting torque of 200\% or greater at $\mathbf{1 H z}$

Newly developed technology - Intelligent Sensorless Vector Control - cope provides optimal high torque without motor tuning.

Trip avoidance function

Advanced over-current trip avoidance function for acceleration, and over-voltage trip avoidance function for deceleration.
Reduced trip likelihood means improved drive system reliability and availability.

Removable Control Terminal

Connector type control terminal minimizes control terminal wiring when performing field maintenance. Input logic is selectable from Sink or Source to match external device (PLCs, etc.).

Removable Keypad

Keypad (digital operator) can be connected via a cable. Remote operation ready.
Three LEDs (power, alarm, run) on the inverter display drive's status.

Operation Source Switch

Run command/frequency source are easy to select with a DIP switch. Default is keypad settings.
Sliding the switch changes the sources to the control terminals.

Model Configuration

Applicable Motor kW (HP)	1-/3-phase 200 V class			3-phase 400V class	
	US version	European version	JP version	US version	European version
0.2(1/4)	SJ200-002NFU2	SJ200-002NFEF2	SJ200-002LFR		
0.4(1/2)	SJ200-004NFU2	SJ200-004NFEF2	SJ200-004LFR	SJ200-004HFU2	SJ200-004HFEF2
0.55(3/4)		SJ200-005NFEF2			
0.75(1)	SJ200-007NFU2	SJ200-007NFEF2	SJ200-007LFR	SJ200-007HFU2	SJ200-007HFEF2
1.1(1.5)		SJ200-011NFEF2			
1.5(2)	SJ200-015NFU2	SJ200-015NFEF2	SJ200-015LFR	SJ200-015HFU2	SJ200-015HFEF2
2.2(3)	SJ200-022NFU2	SJ200-022NFEF2	SJ200-022LFR	SJ200-022HFU2	SJ200-022HFEF2
3.0(4)					SJ200-030HFEF2
3.7(5)	SJ200-037LFU2		SJ200-037LFR		
4.0(5)				SJ200-040HFU2	SJ200-040HFEF2
5.5(7.5)	SJ200-055LFU2		SJ200-055LFR	SJ200-055HFU2	SJ200-055HFEF2
7.5(10)	SJ200-075LFU2		SJ200-075LFR	SJ200-075HFU2	SJ200-075HFEF2

yet easy-to-use,

range of drive applications.

Improved PID control

Reverse PID function changes the sign of the deviation value which is the difference between target and feedback values. Upper and lower limits from a target value can be imposed on the inverter output frequency.

Output Timing and Logic functions

Output terminals can be assigned logical operators AND, OR and XOR with RUN, AL and so on. ON and OFF delay times are settable for each output terminal. Allows for more flexible system design.

Analog setpoint

 calculate functionsAn offset frequency can be added to or subtracted from the output frequency when ADD terminal is ON. For example, if output frequency setting is 40 Hz and offset frequency is 5 Hz , output frequency becomes 45 Hz (or 35 Hz) when ADD terminal is ON.

Integrated EMC Filter

Reduces electromagnetic noise. (on European-Version units only)

Versatile Functions

- Pure analog monitor output (8-bit, 0-10V DC)
- External thermistor terminal (PTC)
- Cooling-fan on/off
- Side-by-side installation
- Regenerative braking circuit
- Instantaneous power failure recovery
- Second motor setting
- Over-voltage suppression at deceleration
- 3-wire control
- RS-485 Serial port with Modbus®-RTU
- Analog input selection
- Second acceleration/deceleration setting
- Jogging
- Auto-carrier frequency reduction
- Unattended start protection (USP)
- Analog input wire-break detection

Global Performance

- Conformity to global standards.

CE, UL, c-UL and c-Tick approvals.

- Network Compatibility.

The SJ200-2 can communicate with PROFIBUS ${ }^{\circledR}$. CANopen with communication options.

Model Name Indication

SJ200-004 HFEF?

Version Number
F : Integrated EMC filter
U : US version
E : European version
R : Japanese version
F : With keypad
Applicable Motor
Capacity
002: 0.2kW(1/4HP)
075: 7.5kW(10HP)

CONTENTS

Features 1-2
Standard Specifications 3
Dimensions 4
Operation and Programming 5
Operation / Terminal Functions 6
Function List 7-9
Protective Functions 10
Connecting Diagram 11
Wiring and Accessories 12
For Correct Operation 13-14

Standard Specifications

1-/3-phase 200V class

Model SJ200-		European Version	002NFEF2	004NFEF2	005NFEF2	007NFEF2	011NFEF2	015NFEF2	022NFEF2	-	-	-	
		US Version	002NFU2	004NFU2	-	007NFU2	-	015NFU2	022NFU2	037LFU2	055LFU2	075LFU2	
		JP Version	002LFR	004LFR	-	007LFR	-	015LFR	022LFR	037LFR	055LFR	075LFR	
Output Ratings	Applicable motor size, 4-pole kW(HP) *1		0.2(1/4)	0.4(1/2)	0.55(3/4)	0.75(1)	1.1(1.5)	1.5 (2)	2.2(3)	3.7(5)	5.5(7.5)	7.5(10)	
	Rated capacity	200 V	0.5	0.9	1.0	1.4	1.7	2.8	3.8	6.0	7.5	11	
		240 V	0.6	1.2	1.3	2.0	2.1	3.3	4.5	7.2	9.9	13.3	
		Rated output current (A) *2 Overload capacity(output current)		1.6	2.6	3.0	4.0	5.0	8.0	11.0	17.5	24	32
				150\% for 60 sec .									
	Rated output voltage (V)		3 -phase (3-wire) 200 to 240 V (corresponding to input voltage)										
Input Rating	Rated input voltage (V)		$1-/ 3$-phase 200 to $240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$										
Enclosure *4													
Cooling method			Self-cooling					Force ventilation					
Weight (kg)		-NFEF	0.8	0.95	0.95	1.4	1.4	1.9	1.9	-	-	-	
		-NFU/LFU	0.7	0.85	-	1.3	-	1.8	1.8	1.9	3.5	3.5	
		-LFR	0.7	0.85	-	0.9	-	1.8	1.8	1.8	3.5	3.5	

3-phase 400V class

Model SJ200-		European Version	004HFEF2	007HFEF2	015HFEF2	022HFEF2	030HFEF2	040HFEF2	055HFEF2	075HFEF2
		US Version	004HFU2	007HFU2	015HFU2	022HFU2	-	040HFU2	055HFU2	075HFU2
		JP Version	004HFR	007HFR	015HFR	022HFR	-	037HFR	055HFR	075HFR
Output Ratings	Applicable motor size, 4-pole kW(HP) *1		0.4(1/2)	0.75(1)	1.5 (2)	2.2 (3)	3(4)	3.7(5)	5.5(7.5)	7.5(10)
	Rated capacity	400 V	1.0	1.7	2.6	3.8	5.4	5.9	7.5	11
		480 V	1.2	2.0	3.1	4.5	6.5	7.1	10.8	13.3
	Rated output current (A) *2		1.5	2.5	3.8	5.5	7.8	8.6	13	16
	Overload capacity(output current)		150% for 60 sec .							
	Rated output vo	(V)	3 -phase (3-wire) 380 to 480 V (corresponding to input voltage)							
Input Rating	Rated input voltage (V)		3 -phase 380 to $480 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$							
Enclosure *4			IP20							
Cooling method			Self-cooling		Force ventilation					
Weight (kg)		-HFEF	1.4	1.8						
		-HFU	1.3	1.7	1.8	1.8	-	1.8	3.5	3.5
		-HFR	1.3	1.7	1.8	1.8	-	1.8	3.5	3.5

General Specifications

Item			General Specifications
Control	Control method		Line-to-line sine wave pulse-width modulation (PWM) control
	Output frequency range *5		0.5 to 400 Hz
	Frequency accuracy *6		Digital command $: \pm 0.01 \%$, Analog command $\pm 0.2 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$
	Frequency setting resolution		Digital: 0.1 Hz , Analog: (max frequency)/1000
	Voltage/Frequency Characteristic		V / f control, V / f variable (constant torque, reduced torque)
	Acceleration/deceleration time		0.01 to 3000 sec . (linear, sigmoid), two-stage accel./decel.
	Starting torque *7		200\%/1Hz
	Carrier frequency range		2.0 to 14.0 kHz
	Protective functions		Over-current, over-voltage, under-voltage, overload, overheat, ground fault at power-on, overload limit, input over-voltage, external trip, EEPROM error, CPU error, USP error, braking resistor overload, LAD stop at over-voltage, over-current suppression, Termister error
Input terminal	Specification		10kohm input impedance, sink/source logic selectable
	Functions		FW(Forward), RV(Reverse), CF1-CF4(Multispeed command), JG(Jogging), DB(External DC braking), SET(Second motor constants setting), 2CH(Second accel./decel.), FRS(Free-run stop), EXT(External trip), USP(Unattended start protection), SFT(Software lock), AT(Analog input selection), RS(Reset), PTC(Thermistor input) *8, STA(3-wire start), STP(3-wire stop), F/R(3-wire fwd./rev.), PID(PID On/Off), PIDC(PID reset), UP/DWN(Remote-controlled accel./decel.) , UDC(Remote-controlled data clearing), OPE(Operator control), ADD(ADD frequency enable), F-TM(force terminal mode), RDY(quick start enable),S-ST(Special-Set 2nd Motor Data), NO(Not selected)
Output signal	Intelligent output terminal	Specification	27 V DC 50 mA max open collector output, 2 terminals 1c output 250 V AC/30V DC 2.5 A relay (ALO, AL1, AL2 terminals)
		Function	RUN(run signal), FA1(Frequency arrival type 1 - constant speed), FA2(Frequency arrival type 2 - over-frequency), OL(overload advance notice signal), OD(Output deviation for PID control), AL(alarm signal), DC(Wire brake detect on analog input), FBV(PID Second Stage Output), NDC(ModBus Network Detection Signal), LOG(Logic Output Function), ODC(Option Card Detection Signal)
	Analog output terminal	Specification	0 to 10 V DC (8-bit resolution)
		Function	Analog Frequency monitor, analog current monitor
Operator	Display	Specification	4 -digits 7 segment LEDs
		Function	Parameter setting, output frequency, output current, motor torque, scaled value of output frequency, trip history, I/O terminal condition, input power, output voltage. Rotation direction, PID Feedback, RON time, Power-on time.
	Status LED Interface		Power, Alarm, Run, Prg, Hz and A Potentiometer, RUN, STOP/RESET, UP, DOWN, FUN and STR keys
Operation	Frequency setting	Operator keypad	Up and Down keys / Value settings or analog setting via potentiometer on operator keypad
		External signal	0 to 10 V DC, 4 to 20 mA
		Serial port	RS485 interface (Modbus RTU)
	FW/RV Run	Operator Keypad	Run key / Stop key (change FW/RV by function command)
		External signal	FW Run/Stop (NO contact), RV set by terminal assignment (NC/NO), 3-wire input available
		Serial port	RS485 interface (Modbus RTU)
Environment	Operating temperature		-10 to $40^{\circ} \mathrm{C}$ (carrier frequency $\leq 5 \mathrm{kHz}$) -10 to $50^{\circ} \mathrm{C}$ (derating for carrier frequency and output current required)
	Storage temperature		-20 to $65^{\circ} \mathrm{C}$
	Humidity		20 to 90% RH
	Vibration		$5.9 \mathrm{~mm} / \mathrm{s}^{2}(0.6 \mathrm{G}) 10$ to 55 Hz
	Location		Altitude $1,000 \mathrm{~m}$ or less, indoors (no corrosive gasses or dust)
Other functions			AVR (Automatic Voltage Regulation), V/f characteristic selection, accel./ decel. curve selection, frequency upper/lower limit, 16 stage multispeed, PID control, frequency jump, external frequency input bias start/end, jogging, automatic torque boost, cooling fan On/Off, trip history etc.
Coating color			Gray (Munsell 8.5YR6.2/0.2)
Options			Remote operator with copy function (SRW-OEX), EMI filters, input/output reactors, DC reactors, radio noise filters, braking resistors, braking units, LCR filter, communication cables (ICS-1, 3), programming software (being planned)

 be taken to prevent the rated motor current $(50 / 60 \mathrm{~Hz})$ from exceeding the rated output current of the inverter.
Note 2: The output voltage decreases as the main supply voltage decreases (except when using the AVR function). In Note 5: To operate the motor beyond 50/60 Hz , consult the motor manufacturer for the any case, the output voltage cannot exceed the input power supply voltage.
Note 3: The braking torque via capacitive feedback is the average deceleration torque at the shortest deceleration (stopping from $50 / 60 \mathrm{~Hz}$ as indicated). It is not continuous regenerative braking torque. The average decel torque varies with motor loss. This value decreases when operating beyond 50 Hz . If a large regenerative torque is required, the optional regenerative braking resistor should be used.

Dimensions

Keypad (digital operator), provided as standard
OPE - SRmini

Operation and Programming

SJ200 Series can be easily operated with the digital operator (OPE-SRmini) provided as standard.
The digital operator can also be detached and used for remote-control. An operator with copy function is also available as an option.

Parameter Display
Displays frequency, motor current, rotational speed of the motor, and an alarm code.

RUN Key
Press to run the motor.
STOP/RESET Key
Press to stop the drive or reset an alarm.
Function Key
Press to set or monitor a parameter value.

Up/Down Keys
Press up or down to sequence through parameters and functions shown on the display, and increment/decrement values.

Power LED
Lights when the power input to the drive is ON.
Display Unit LEDs
Indicates the unit associated with the parameter display.

Monitor LEDs
Shows drive's status.

Potentiometer

Store Key
Press to write the new value to the EEPROM.

You can mount the keypad with the potentiometer for a NEMA1 rated installation. The kit also provides for removing the potentiometer knob to meet NEMA 4X requirements, as shown (part no.4X-KITmini).

1. Setting the maximum output frequency

(1) 10 or the value previously monitored is displayed.

(5) FHO Press (1) 2 until FiDCH appears.

2. Running the motor(by potentiometer)

(1) 10 or the value previously monitored is displayed.
(2)Function code appears.

(4) Firic number last setting is displayed.

(8)Returns to $\mathrm{Alin}-1$ and the setting is complete.

*To run the motor, go back to monitor mode or basic setting mode.
*Pressing FUNC key
for a while and back to dTO I
(2)The motor runs at the frequency set by the potentiometer. (3)The motor stops.
\square Powero

3. Monitoring output current value

Operation / Terminal Functions

Switch symbol	Switch Name		Switch Name Description
SR/SK	Input logic selection switch	Select input logic of intelligent input terminals from sink or source. *1	
		SR [default]	Source logic
		SK	Sink logic
485/OPE	RS-485 communication/key pad selection switch	Select communication connector distination. *2	
		485	RS-485 communicaiton via Modbus protocol
		OPE [default]	Keypad (option)
TM/PRG	Frequency/RUN command input switch	Select frequency and run command input source.	
		TM	Input from control terminal Frequency source: Analog input (O, OI) Run command source: FW and/or RV terminal (FW and/or RV must be assigned to input terminal)
		PRG [default]	Input from source defined with keypad program Frequency source: Potentiometer (default) Run command source: RUN key onkeypad

Note 1: Polarity of the PCS terminal is changed by setting the input logic selection switch.
Note 2: The standard keypad (OPE-SRmini) can be used either the switch is set to 485 or OPE.

Terminal Description

Terminal Symbol

Terminal Symbol
$\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~N} / \mathrm{L} 3$
$\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3$
$+1,+$
,+ RB
+-
$\boldsymbol{\rho}$

Terminal Name
Main power supply input terminals
Inverter output terminals
DC reactor connection terminals
External braking resistor connection terminals
External braking unit connection terminals
Ground connection terminal

Screw Diameter and Terminal Width

Model	Screw diameter (mm)	Terminal width W (mm)
002-005NFEF2/002-004NFU2/002-007LFR	M3.5	7.6
007-022NFEF2/007-022NFU2/037LFU2/015-037LFR	M4	10
004-040HFEF2/HFU2/004-037HFR	M5	13
055-075LFU2/LFR/HFEF2/HFU2/HFR		

Terminal arrangement

- SJ200 002-005NFEF2,002-004NFU2,002-007LFR

- SJ200 007-022NFEF2,004-040HFEF2,007-022NFU2, 037LFU2,004-040HFU2,015-037LFR,004-037HFR Jumper

- SJ200 055•075LFU2,LFR/ 055.075HFU2,HFR

- SJ200 055•075HFEF2

Terminal function

	Terminal name	Description							Ranges and Notes								
Input/monitor signals	AM	Voltage analog output							0 to10V DC, 1 mA max .								
	L	Common for inputs							24 V DC, 100mA max.								
	PCS	+24V power for inputs															
	6	Intelligent (programable) input terminals, selection from: FW(Forward), RV(Reverse), CF1-CF4(Multispeed command), JG(Jogging), DB(External DC braking), SET(Second motor constants setting), 2CH(Second accel./decel.), FRS(Free-run stop), EXT(External trip), USP(Unattended start protection), SFT(Software lock), AT(Analog input selection), RS(Reset), PTC(Thermistor input), STA(3-wire start), STP(3-wire stop), F/R(3-wire fwd./rev.), PID(PID On/Off), PIDC(PID reset), UP/DWN(Remote-controlled accel./decel.), UDC(Remote-controlled data clearing), OPE(Operator control), ADD(Frequency setpoint), F-TM(Force terminal enable), RDY(Quick start enable), S-ST(Special-Set 2nd Motor Data) or NO(Not selected).															
	5																
	4																
	3																
	1																
Freqency setting	H	+10 V analog reference	$\begin{array}{\|l\|l\|l\|l\|} \hline \mathrm{H} & \mathrm{O} & \mathrm{Ol} & \mathrm{~L} \\ \hline \end{array}$	H	$\begin{array}{l\|l\|} \hline \mathrm{O} & \mathrm{O} \\ \hline \end{array}$	$L \quad \mathrm{H}$			10 V DC, 10 mA max								
	0	Analog input, voltage	($1 \mathrm{k} \Omega-2 \mathrm{k} \Omega$) DC0-10V Input inpedance $10 \mathrm{k} \Omega$ DC4-20mA Input inpedance $250 \mathrm{k} \Omega$ If no input termilal is assigned to [AT](analog input selection),the inverter outputs sum of O (voltage) and Ol (current) frequency. Assign [AT] for input terminal to selecting frequency source from voltage or current.						0 to 10 V DC, input impedance10kohm								
	OI	Analog input, current							4 to 20 mA DC , input impedance 250ohm								
	L	Common for inputs $\begin{array}{l}\text { sum of } \mathrm{O} \\ \text { Assign [A }\end{array}$							-								
Output signals	12	Intelligent (programable) output terminals, selection from: RUN(run signal), FA1(Frequency arrival type 1 -constant speed), FA2(Frequency arrival type 2 -over-frequency), OL(overload advance notice signal), OD(Output deviation for PID control), AL(alarm signal), DC (Wire brake detect on analog input), FBV(Feedback voltage comparison), NDc(Network Disconnection), LOG(Logic operation result), ODC(Option Card Detection signal).							Open collector output L level at operation (ON) 27 V DC, 50 mA max.								
	11																
	CM2	Common for intelligent output terminals							-								
Relay output	AL2	Relay contact (alarm output) terminals (programable, function is selectable same as ШШШШ intelligent output terminals).	$\text { - } 0$		<Initial setting> Normal: ALO-AL1 closed Trip/Power OFF: ALO-AL2				AC250V 2.0 A (Resistive load) 0.2 A (cos $\varphi=0.4)$ DC30V $3.0 \mathrm{~A}($ Resistive load) 0.6 A (cos $\varphi=0.4)$ (minimum) AC100V 10 mA DC 5 V 100 mA								
	AL1																
	ALO																

Function List

The parameter tables in this chapter have a column titled "Run Mode Edit." An Ex mark x means the parameter cannot be edited; a Check mark \checkmark means the parameter can be edited. The table example to the right contains two adjacent marks "x \checkmark ". These two marks (that can also be "xx" or " $\checkmark \vee$ ") correspond to low-access or high-access levels to Run Mode edits (note Lo and Hi in column heading).

Monitoring and main profile parameters

Function Code		Name	Range	Default	Unit	Run mode edit		
		Lo				Hi		
Monitor	d001		Output frequency monitor	0.0 to 400.0	-	Hz	-	-
	d002	Output current monitor	0.0 to 999.9	-	A	-	-	
	d003	Rotation direction monitor	F(Forward)/o(Stop)/r(Reverse)	-	-	-	-	
	d004	Process variable, PID feedback monitor	0.00 to 99.99/100.0 to 999.9/1000. to 9999.	-	-	-	-	
	d005	Intelligent input terminal status	=	-	-	-	-	
	d006	Intelligent output terminal status	=	-	-	-	-	
	d007	Scaled output frequency monitor	0.00 to 99.99/100.0 to 999.9/1000. to 9999./1000 to 9999(10000 to 99999)	-	-	-	-	
	d013	Output voltage monitor	0.0 to 600.0	-	V	-	-	
	d016	Cumulative operation RUN time monitor	0. to 9999./1000 to 9999/10000 to 99990	-	hr	-	-	
	d017	Cumulative power-on time monitor	0. to 9999./1000 to 9999/10000 to 99991	-	hr	-	-	
	d080	Trip counter	0. to 9999.	-	times	-	-	
	d081	Trip monitor 1	Displays trip event information	-	-	-	-	
	d082	Trip monitor 2		-	-	-	-	
	d083	Trip monitor 3		-	-	-	-	
Main Profile Parameters	F001	Output frequency setting	0.0/start freq. to 400.0	0.0	Hz	\checkmark	\checkmark	
	F002	Acceleration time (1) setting	0.01 to 99.99/100.0 to 999.9/1000. to 3000.	10.0	sec	\checkmark	\checkmark	
	F202	Acceleration time (2) setting	0.01 to 99.99/100.0 to 999.9/1000. to 3000.	10.0	sec	\checkmark	\checkmark	
	F003	Deceleration time (1) setting	0.01 to 99.99/100.0 to 999.9/1000. to 3000.	10.0	sec	\checkmark	\checkmark	
	F203	Deceleration time (2) setting	0.01 to 99.99/100.0 to 999.9/1000. to 3000.	10.0	sec	\checkmark	\checkmark	
	F004	Keypad Run key routing	00(Forward)/01(Reverse)	00	-	\times	X	
Expanded functions	A--	A Group: Standard functions						
	b--	b Group: Fine-tuning functions						
	C--	C Group: Intelligent terminal functions						
	H--	H Group: Motor constants functions						
	P--	P Group: Expansion Card Functions						

A Group: Standard functions

Function Code		Name	Range	Default			Unit	Run mode edit		
		-EF(CE)		-U(UL)	-R(JP)	Lo		Hi		
Basic setting	A001		Frequency source setting	00(Keypad potentiometer)/01(Control terminal)/ 02(Function F001 setting)/03(RS485)/10(Calculation result)	01	00	00	-	\times	\times
	A201	Frequency source setting, 2nd motor	01		00	-	-	\times	\times	
	A002	Run command source setting	01(Control terminal)/02(Run key on keypad)/03(RS485)	01	02	02	-	\times	\times	
	A202	Run command source setting, 2nd motor		01	02	-	-	\times	\times	
	A003	Base frequency setting	30 to maximum freq.	50.	60.	60.	Hz	\times	\times	
	A203	Base frequency setting, 2nd motor	30 to maximum freq.	50.	60.	60.	Hz	\times	\times	
	A004	Maximum frequency setting	30 to 400	50.	60.	60.	Hz	\times	\times	
	A204	Maximum frequency setting, 2nd motor	30 to 400	50.	60.	60.	Hz	\times	\times	
Analog input setting	A005	[AT] selection	00(O/OI)/01(disable)/02(O/VR)/03(OI/VR)	00	00	00	-	\times	\checkmark	
	A011	[O]-[L] input active range start frequency	0.0 to maximum freq.	0.0	0.0	0.0	Hz	\times	\checkmark	
	A012	[O]-[L] input active range end frequency	0.0 to maximum freq.	0.	0.	0.0	Hz	\times	\checkmark	
	A013	[O]-[L] input active range start voltage	0 to 100	0.0	0.0	0.	\%	\times	\checkmark	
	A014	[0$]$-[L] input active range end voltage	0 to 100	100.	100.	100.	\%	\times	\checkmark	
	A015	[O]-[L] input start frequency enable	00(use set value)/01(use 0 Hz)	01	01	01	-	\times	\checkmark	
	A016	External frequency filter time constant	1 to 17	2.	8.	8.	-	\times	\checkmark	
Multi-speed and jogging	A020	Multi-speed frequency setting (0)	0.0/start freq. to maximum freq.	0.0	0.0	0.0	Hz	\checkmark	\checkmark	
	A021	Multi-speed frequency setting (1)				5.0				
	A022	Multi-speed frequency setting (2)				10.0				
	A023	Multi-speed frequency setting (3)				15.0				
	A024	Multi-speed frequency setting (4)				20.0				
	A025	Multi-speed frequency setting (5)				30.0				
	A026	Multi-speed frequency setting (6)				40.0				
	A027	Multi-speed frequency setting (7)				50.0				
	A028	Multi-speed frequency setting (8)				60.0				
	A029A035	Multi-speed frequency setting (9-15)				0.0				
	A220	Multi-speed frequency (2nd), 0	0.0/start freq. to maximum freq.	0.0	0.0	0.0	Hz	\checkmark	\checkmark	
	A038	Jog frequency setting	0.00/start freq. to 9.99	1.00	1.00	1.00	Hz	\checkmark	\checkmark	
	A039	Jog stop mode	00(free-run stop)/01(deceleration and stop)/02(DC braking)	00	00	00	-	\times	\checkmark	
V/f Characteristic	A041	torque boost select	00(Manual)/01(Automatic)	-	-	01	-	\times	\times	
	A241	torque boost select 2nd motor	00(Manual)/01(Automatic)	-	-	01	-	\times	X	
	A042	Manual torque boost value	0.0 to 20.0	5.0	5.0	5.0	\%	\checkmark	\checkmark	
	A242	Manual torque boost value, 2nd motor	0.0 to 20.0	0.0	0.0	0.0	\%	\checkmark	\checkmark	
	A043	Manual torque boost frequency adjustment	0.0 to 50.0	3.0	3.0	3.0	\%	\checkmark	\checkmark	
	A243	Manual torque boost frequency adjustment, 2nd motor	0.0 to 50.0	0.0	0.0	0.0	\%	\checkmark	\checkmark	
	A044	V / f characteristic curve selection	00(VC)/01(Reduced torque)/02(I-SLV)	02	02	00	-	\times	\times	
	A244	V/f characteristic curve selection, 2nd motor	00(VC)/01(Reduced torque)/02(I-SLV)	02	02	00	-	\times	\times	
	A045	V/f gain setting	20 to 100	100.	100.	100.	\%	\checkmark	\checkmark	
	A245	V/f gain setting, 2nd motor	20 to 100	100.	100.	-	\%	\checkmark	\checkmark	
	A046	iSLV voltage compensation gain	0 to 255	100.	100.	100.	\%	\checkmark	\checkmark	
	A246	iSLV voltage compensation gain,2nd motor	0 to 255	100.	100.	100.	\%	\checkmark	\checkmark	
	A047	iSLV slip compensation gain	0 to 255	100.	100.	100.	\%	\checkmark	\checkmark	
	A247	iSLV slip compensation gain, 2nd motor	0 to 255	100.	100.	100.	\%	\checkmark	\checkmark	
DC braking	A051	DC braking enable	00(Disable)/01(Enable)	00	00	00	-	\times	\checkmark	
	A052	DC braking frequency setting	Start freq. to 60.0	0.5	0.5	0.5	Hz	\times	\checkmark	
	A053	DC braking wait time	0.0 to 5.0	0.0	0.0	0.0	sec	\times	\checkmark	
	A054	DC braking force during deceleration	0. to 100 .	0.	0.	0.	\%	\times	\checkmark	
	A055	DC braking time for deceleration	0.0 to 60.0	0.0	0.0	0.0	sec	\times	\checkmark	
	A056	DC braking / edge or level detection for [DB] input	00(Edge)/01 (Level)	01	01	01	-	\times	\checkmark	
$\begin{aligned} & \text { Frequency limit } \\ & \text { and jump } \\ & \text { frequency } \end{aligned}$	A061	Frequency upper limit setting	0.0/Freq. lower limit setting to maximum freq.	0.0	0.0	0.0	Hz	\times	\checkmark	
	A261	Frequency upper limit setting, 2nd motor	$0.0 /$ Freq. lower limit setting (2nd) to maximum freq. (2nd)	0.0	0.0	0.0	Hz	\times	\checkmark	
	A062	Frequency lower limit setting	0.0/Start freq. to freq. upper limit setting	0.0	0.0	0.0	Hz	\times	\checkmark	
	A262	Frequency lower limit setting, 2nd motor	0.0/Start freq. (2nd) to freq. upper limit setting (2nd)	0.0	0.0	0.0	Hz	\times	\checkmark	

Function List

A Group: Standard functions
\checkmark : Allowed

Function Code		Name	Range	Default			Unit	Run mode edit		
		-EF(CE)		-U(UL)	-R(JP)	Lo		Hi		
$\begin{aligned} & \text { Frequency limit } \\ & \text { and jump } \\ & \text { frequency } \end{aligned}$	A063		Jump (center)frequency setting 1	0.0 to 400.	0.0	0.0	0.0	Hz	\times	\checkmark
	A064	Jump (hysteresis)frequency setting 1	0.0 to 10.0	0.5	0.5	0.5	Hz	\times	\checkmark	
	A065	Jump (center)frequency setting 2	0.0 to 400.	0.0	0.0	0.0	Hz	X	\checkmark	
	A066	Jump (hysteresis)frequency setting 2	0.0 to 10.0	0.5	0.5	0.5	Hz	\times	\checkmark	
	A067	Jump (center)frequency setting 3	0.0 to 400.	0.0	0.0	0.0	Hz	\times	\checkmark	
	A068	Jump (hysteresis)frequency setting 3	0.0 to 10.0	0.5	0.5	0.5	Hz	\times	\checkmark	
PID Control	A071	PID Enable	00(Disable)/01(Enable)	00	00	00	-	\times	\checkmark	
	A072	PID proportional gain	0.2 to 5.0	1.0	1.0	1.0	-	\checkmark	\checkmark	
	A073	PID integral time constant	0.0 to 150.0	1.0	1.0	1.0	sec	\checkmark	\checkmark	
	A074	PID derivative time constant	0.00 to 100.0	0.0	0.0	0.0	sec	\checkmark	\checkmark	
	A075	PV scale conversion	0.01 to 99.99	1.00	1.00	1.00	-	\times	\checkmark	
	A076	PV source setting	00([OI] terminal)/01([0] terminal)/02(RS485)/10(Calculation result)	00	00	00	-	\times	\checkmark	
	A077	Reverse PID action	00(OFF)/01(ON)	00	00	-	-	\times	\checkmark	
	A078	PID output limit	0.0 to 100.0	0.0	0.0	-	\%	\times	\checkmark	
AVR function	A081	AVR function select	00(Enable)/01(Disable)/02(Enabled except during deceleration)	00	00	02	-	\times	\times	
	A082	AVR voltage select	200 V class: 200/215/220/230/240 400V class: 380/400/415/440/460/480	230/400	230/460	200/400	V	\times	\times	
Operation mode and acc./dec. function	A092	Acceleration (2) time setting	0.01 to 99.99/100.0 to 999.9/1000. to 3000.	15.00	15.00	15.00	sec	\checkmark	\checkmark	
	A292	Acceleration (2) time setting, 2nd motor	0.01 to 99.99/100.0 to 999.9/1000. to 3000.	15.00	15.00	15.00	sec	\checkmark	\checkmark	
	A093	Deceleration (2) time setting	0.01 to 99.99/100.0 to 999.9/1000. to 3000.	15.00	15.00	15.00	sec	\checkmark	\checkmark	
	A293	Deceleration (2) time setting, 2nd motor	0.01 to 99.99/100.0 to 999.9/1000. to 3000.	15.00	15.00	15.00	sec	\checkmark	\checkmark	
	A094	Select method to switch to Acc2/Dec2 profile	00 (2CH from input terminal)/01(transition freq.)	00	00	00	-	\times	\times	
	A294	Select method to switch to Acc2/Dec2 profile, 2nd motor	00 (2CH from input terminal)/01 (transition freq.)	00	00	00	-	X	\times	
	A095	Acc1 to Acc2 frequency transition point	0.0 to 400.0	0.0	0.0	0.0	Hz	X	\times	
	A295	Acc1 to Acc2 frequency transition point, 2nd motor	0.0 to 400.0	0.0	0.0	0.0	Hz	\times	\times	
	A096	Dec1 to Dec2 frequency transition point	0.0 to 400.0	0.0	0.0	0.0	Hz	X	\times	
	A296	Dec1 to Dec2 frequency transition point, 2nd motor	0.0 to 400.0	0.0	0.0	0.0	Hz	\times	\times	
	A097	Acceleration curve selection	00(Linear)/01(Sigmoid)	00	00	00	-	X	\times	
	A098	Deceleration curve selection	00(Linear)/01(Sigmoid)	00	00	00	-	\times	\times	
External freq. tuning	A101	[OII]-[L] input active range start frequency	0.0 to maximum freq.	0.0	0.0	0.0	Hz	\times	\checkmark	
	A102	[OI]-[L] input active range end frequency	0.0 to maximum freq.	0.0	0.0	0.0	Hz	\times	\checkmark	
	A103	[OI]-[L] input active range start current	0. to 100.	0.0	0.0	0.	\%	\times	\checkmark	
	A104	[OI]-[L] input active range end current	0. to 100.	100.	100.	100.	\%	\times	\checkmark	
	A105	[OI]-[L] input start frequency enable	00(Use setting value)/01(0Hz)	01	01	01	-	\times	\checkmark	
Frequency caluculation	A141	A input select for calculate function	01 (Keypad potentiometer)	02	02	-	-	\times	\checkmark	
	A142	B input select for calculate function	02(O input)/03(Ol input)/04(RS485)	03	03	-	-	X	\checkmark	
	A143	Calculation symbol	00(A141+A142)/01(A141-A142)/02(A141*A142)	00	00	-	-	\times	\checkmark	
	A145	ADD frequency	0.0 to 400.0	0.0	0.0	-	Hz	\checkmark	\checkmark	
	A146	ADD direction select	00 (Plus),01(Minus)	00	00	-	,	\times	\checkmark	
	A151	Pot. input active range start frequency	0.0 to 400.0	0.0	0.0	-	Hz	\times	\checkmark	
	A152	Pot. input active range end frequency	0.0 to 400.0	0.0	0.0	-	Hz	X	\checkmark	
	A153	Pot. input active range start current	0.0 to 100.0	0.0	0.0	-	\%	\times	\checkmark	
	A154	Pot. input active range end current	0.0 to 100.0	0.0	0.0	-	\%	\times	\checkmark	
	A155	Pot.input start frequency enable	00(Disable)/01(Enable)	01	01	-	-	X	\checkmark	

b Group: Fine-tuning functions

Function Code		Name	Range	Default			Unit	Run mode edit		
		-EF(CE)		-U(UL)	-R(JP)	Lo		Hi		
Restart after instantaneous power failure	b001		Selection of automatic restart mode	00(Alarm output)/01(Restart at 0 Hz)/02(Resume after freq. matching)/03(Resume freq. matching then trip)	00	00	00	-	\times	\checkmark
	b002	Allowable under-voltage power failure time	0.3 to 25.0	1.0	1.0	1.0	sec	\times	\checkmark	
	b003	Retry wait time before motor restart	0.3 to 100.0	1.0	1.0	1.0	sec	\times	\checkmark	
	b004	Instantaneous power failure / under-voltage trip alarm enable	00(Disable)/01(Enable)	00	00	00	-	\times	\checkmark	
	b005	Number of restarts on power failure / under-voltage trip events	00(Restart 16 times)/01(Always restart)	00	00	00	-	\times	\checkmark	
	b012	Electronic thermal setting	0.2*Rated current to 1.2*Rated current	Rated current	Rated current	Rated current	A	\times	\checkmark	
	b212	Electronic thermal setting, 2nd motor		Rated current	Rated current	Rated current	A	\times	\checkmark	
	b013	Electronic thermal characteristic	00(Reduced torque)/01(Constant torque)/02(Reduced torque 2)	01	01	00	-	\times	\checkmark	
	b213	Electronic thermal characteristic, 2nd motor		01	01	00	-	\times	\checkmark	
Overload restriction	b021	Overload restriction operation mode	00(Disable)/01(Enable)/02(Enable for during acceleration)	01	01	01	-	\times	\checkmark	
	b221	Overload restriction operation mode, 2nd motor		01	01	-	-	\times	\checkmark	
	b022	Overload restriction setting	0.1*Rated current to 1.5*Rated current	1.5*Rated	1.5*Rated	1.5 'Rated durent	A	\times	\checkmark	
	b222	Overload restriction setting, 2nd motor		current	current	-	A	\times	\checkmark	
	b023	Deceleration rate at overload restriction	0.1 to 3000.0	1.0	30.0	1.0	sec	\times	\checkmark	
	b223	Deceleration rate at overload restriction, 2nd motor		1.0	30.0	-	sec	\times	\checkmark	
	b028	Overload restriction source selection	00(b022/b222 setting level)/01([O]-[L] analog input)	00	00	-	-	\times	\checkmark	
	b228	Overload restriction source selection, 2nd motor		00	00	-	-	X	\checkmark	
Lock	b031	Software lock mode selection	00 ([SFT] input blocks all edits)/01([SFT] input blocks edits except F001 and Multispeed parameters/02(No access to edits)/03(No access to edits except F001 and Multi-speed parameters)/10(High-level access,including b031)	01	01	01	-	\times	\checkmark	
Others	b080	[AM] terminal analog meter adjustment	0. to 255.	100.	100.	100.	-	\times	\checkmark	
	b082	Start frequency adjustment	0.5 to 9.9	0.5	0.5	0.5	Hz	\times	\checkmark	
	b083	Carrier frequency setting	2.0 to 14.0	5.0	5.0	5.0	kHz	\times	\times	
	b084	Initialization mode (parameters or trip history)	00(Trip history clear)/01(Parameter initialization)/ 02(Trip history clear and parameter initialization)	00	00	00	-	\times	\times	
	b085]Country code for initialization	00(JP)/01(CE)/02(US)	01	02	00	-	\checkmark	\times	
	b086	Frequency scaling conversion factor	0.1~99.9	1.0	1.0	1.0	-	\times	\checkmark	
	b087	STOP key enable	00(Enable)/01(Disable)	00	00	00	-	\times	\checkmark	
	b088	Restart mode after FRS	00 (Restart from 0 Hz)/01(Restart with frequency detection)	00	00	00	-	\times	\checkmark	
	b090	Dynamic braking usage ratio	0.0 to 100.0	0.0	0.0	0.0	\%	\times	\checkmark	
	b091	Stop mode selection	00(Deceleration and stop)/01(Free-run stop)	00	00	00	-	\times	\times	
	b092	Cooling fan control (see note below)	00 (Always ON//01(ON during RUN, OFF during STOP)/02(Depend on fin temperature)	00	00	00	-	\checkmark	\times	
	b095	Dynamic braking control	00(Disable)/01(Enable during RUN only)/02(Enable)	00	00	00	-	\times	\checkmark	
	b096	Dynamic braking activation level	330~380/660~760	360/720	360/720	360/720	V	\times	\checkmark	
	b130	Over-voltage LADSTOP enable	00(Disable)/01(Enable)	00	00	00	-	\times	\checkmark	
	b131	Over-voltage LADSTOP level	330~390V/660~780V	380/760	380/760	380/760	V	\checkmark	\checkmark	
	b140	Over-current trip suppression	00(Disable)/01(Enable)	00	00	00	-	\times	\checkmark	
	b150	Carrier mode	00(Disable)/01(Enable)	00	00	-	-	\times	\checkmark	
	b151	Quick start enable	00(Disable)/01(Enable)	00	00	-	-	\checkmark	\checkmark	

Function List

Function Code							X: Not allowed			
		Name	Range	Default			Unit	Run mode edit		
		-EF(CE)		-U(UL)	-R(JP)	Lo		Hi		
Intelligent input terminal	C001		Terminal [1] function	00(FW:Forward), 01(RV:Reverse), 02-05(CF1-CF4:Multispeed command), 06(JG:Jogging), 07(DB:External DC braking), 08(SET:Second motor constants setting), 09(2CH:Second accel./decel.), 11(FRS:Free-run stop), 12(EXT:External trip), 13(USP:Unattended start protection), 15(SFT:Software lock), 16(AT:Analog input selection), 18(RS:Reset), 19(PTC:Thermistor input), 20(STA:3-wire start), 21(STP:3-wire stop), 22(F/R:3-wire fwd./rev.), 23(PID:PID On/Off), 24(PIDC:PID reset), 27(UP:Remote-controlled accel.), 28(DWN:Remote-controlled decel.), 29(UDC:Remote-controlled data clearing), 31(OPE:Operator control), 50(ADD: Frequency setpoint), 51(F-TM: Force terminal enable), 52(RDY: Quick Start Enable), 53(S-ST: Special-Set (select) 2nd Motor Data), 255(NO:Not selected)	00	00	00	-	\times	\times
	C201	Terminal [1] function, 2nd motor	00		00	-	\times		\times	
	C002	Terminal [2] function	01		01	01		\times	\times	
	C202	Terminal [2] function, 2nd motor	01		01	-		\times	\times	
	C003	Terminal [3] function	02		16	02		\times	\times	
	C203	Terminal [3] function, 2nd motor	02		16	-	-	\times	\times	
	C004	Terminal [4] function	03		13	03		\times	\times	
	C204	Terminal [4] function, 2nd motor	03		13	-		\times	\times	
	C005	Terminal [5] function	18		09	09		\times	\times	
	C205	Terminal [5] function, 2nd motor	18		09	-		\times	\times	
	C006	Terminal [6] function	09		18	18		\times	\times	
	C206	Terminal [6] function, 2nd motor	09		18	-		\times	\times	
	$\begin{aligned} & \text { C011- } \\ & \text { C016 } \end{aligned}$	Terminal [1] to [6] active state	00(NO)/01(NC)	00	00*	00	-	\times	X	
Intelligent input terminal	C021	Terminal [11] and [12] function	00(RUN:run signal), 01(FA1:Frequency arrival type 1 - constant speed), 02(FA2:Frequency arrival type 2 - over-frequency), 03(OL:overload advance notice signal), 04(OD:Output deviation for PID control), 05(AL:alarm signal), 06(DC:Wire brake detect on analog input), 07(FBV: Feedback voltage comparison), 08(NDc: Network Disconnection), 09(LOG: Logic operation result), 10(ODC: Option Card Detection Signal)	01	01	01	-	\times	\times	
	C022			00	00	00	-	\times	\times	
	C026	Alarm relay function		05	05	05	-	\times	\times	
	C028	[AM] signal selection	00(Output frequency)/01(Output current)	00	00	00	-	\times	\checkmark	
	$\begin{aligned} & \text { C031, } \\ & \text { C032 } \end{aligned}$	Terminal [11] and [12] active state	00(NO)/01(NC)	00	00	00	-	X	\times	
	C036	Alarm relay active state	00(NO)/01(NC)	01	01	01	-	\times	\times	
	C041	Overload level setting	0.0*Rated current to 2.0*Rated current	Rated current	Rated current	Rated current	A	\times	\checkmark	
	C241	Overload level setting, 2nd motor						\times	\checkmark	
	C042	Frequency arrival setting for acceleration	0.0 to 400.0	0.0	0.0	0.0	Hz	\times	\checkmark	
	C043	Frequency arrival setting for deceleration	0.0 to 400.0	0.0	0.0	0.0	Hz	\times	\checkmark	
	C044	PID deviation level setting	0.0 to 100.0	3.0	3.0	3.0	\%	\times	\checkmark	
	C052	Feedback comparison upper level	0.0 to 100.0	100	100	-	\%	\times	\checkmark	
	C053	Feedback comparison lower level	0.0 to 100.0	0.0	0.0	-	\%	\times	\checkmark	
Serial communication	C071	Communication speed selection	04(4800bps)/05(9600bps)/06(19200bps)	06	04	04	-	\times	\checkmark	
	C072	Node allocation	1. to 32.	1.	1.	1.	-	\times	\checkmark	
	C074	Communication parity selection	00(No parity)/01(Even parity)/02(Odd parity)	00	00	00	-	\times	\checkmark	
	C075	Communication stop bit selection	1(1-bit)/2(2-bit)	1	1	1	bit	\times	\checkmark	
	C076	Communication error mode	00(Trip)/01(Trip after deceleration stop)/02(Disable)/ 03(FRS)/04(Deceleration stop)	02	02	-	-	\times	\checkmark	
	C077	Communication error time	0.00-99.99	0.00	0.00	-	sec	\times	\checkmark	
	C078	Communication wait time	0. to 1000.	0.	0.	0.	msec	\times	\checkmark	
Analog meter setting	C081	[O] input span calibration	0. to 200.	100.	100.	100.	\%	\checkmark	\checkmark	
	C082	[OI] input span calibration	0. to 200.	100.	100.	100.	\%	\checkmark	\checkmark	
	C085	Thermistor input tuning	0.0 to 200.0	100.0	100.0	-	\%	\checkmark	\checkmark	
	C086	[AM] terminal offset tuning	0.0 to 10.0	0.0	0.0	0.0	V	\checkmark	\checkmark	
Others	C091	Reserved (for factory adjustment)	00 (must not be changed)	00	00	00	-	\checkmark	\checkmark	
	C101	Up/Down memory mode selection	00(Clear last frequency)/01(Keep last frequency adjusted by UP/DWN)	00	00	00	-	\times	\checkmark	
	C102	Reset mode selection	00(Cancel trip state at input signal ON transition)/ 01(Cancel trip state at signal OFF transition)/ 02(Cancel trip state at input signal ON transition)	00	00	00	-	\times	\checkmark	
	C141	Input A select for logic output 1	00(RUN)/01(FA1)/02(FA2)/03(OL)/04(OD)	00	00	-	-	\times	\times	
	C142	Input A select for logic output 2	05(AL)/06(Dc)/07(FBV)/08(NDc)	01	01	-	-	\times	\times	
	C143	Logic function select	00(AND)/01(OR)/02(XOR)	00	00	-	-	\times	\times	
	C144	ON delay time, output terminal 11	0.0 to 100.0	0.0	0.0	-	sec	\times	\checkmark	
	C145	OFF delay time, output terminal 11	0.0 to 100.0	0.0	0.0	-	sec	\times	\checkmark	
	C146	ON delay time, output terminal 12	0.0 to 100.0	0.0	0.0	-	sec	\times	\checkmark	
	C147	OFF delay time, output terminal 12	0.0 to 100.0	0.0	0.0	-	sec	\times	\checkmark	
	C148	ON delay time, relay	0.0 to 100.0	0.0	0.0	-	sec	\times	\checkmark	
	C149	OFF delay time, relay	0.0 to 100.0	0.0	0.0	-	sec	\times	\checkmark	

Note: C014: 01 for UL version.

H Group: Motor constants functions

Function Code		Name	Range	Default			Unit	Run mode edit		
		-EF(CE)		-U(UL)	-R(JP)	Lo		Hi		
Motor constants and gain	H003		Motor capacity, 1st motor	JP,US: $0.2 / 0.4 / 0.75 / 1.5 / 2.2 / 3.7 / 5.5 / 7.5 / 11.0$CE: $0.2 / 0.4 / 0.55 / 0.75 / 1.1 / 1.5 / 2.2 / 3.0 / 4.0 / 5.5 / 7.5 / 11.0$	Factory set	Factory set	Factory set	kW	\times	\times
	H203	Motor capacity, 2nd motor	kW					\times	\times	
	H004	Motor poles setting, 1st motor	2/4/6/8	4	4	4	poles	\times	\times	
	H204	Motor poles setting, 2nd motor		4	4	4	poles	\times	\times	
	H006	Motor stabilization constant, 1st motor	0. to 255.	100	100	100	-	\checkmark	\checkmark	
	H206	Motor stabilization constant, 2nd motor		100	100	100	-	\checkmark	\checkmark	
	H007	Motor voltage class select, 1st motor	$00(200 \mathrm{~V}$ class)/ $01(400 \mathrm{~V}$ class)	Factory set	Factory set	-	V	\times	\times	
	H207	Motor voltage class select, 2nd motor					V	\times	\times	

P Group: Expansion Card Functions

Function Code		Name	Range	Default			Unit	Run mode edit		
		-EF(CE)		-U(UL)	-R(JP)	Lo		Hi		
Option Setting	P044		Network comm watchdog timer	0.00 to 99.99	1.00	1.00	-	sec.	\times	\times
	P045	Inverter action on network comm error	00(Trip (Error Code E70))/01 (Decelerate to stop and trip (Error Code E70)) 02(Hold last speed), 03(Free run stop), 04(Decelerate and stop)	01	01	-	-	\times	\times	
	P046	Polled I/O output instance number	20/21/100	21	21	-	-	\times	X	
	P047	Polled I/O input instance number	70/71/101	71	71	-	-	\times	x	
	P048	Inverter action on network idle mode	00(Trip (Error Code E70))/01 (Decelerate to stop and trip (Error Code E70)) 02(Hold last speed), 03(Free run stop), 04(Decelerate and stop)	01	01	-	-	\times	\times	
	P049	Network motor poles setting for RPM	00 to 38	0	0	-	-	\times	X	

Note: The "P" Group parameters do not appear in the parameter list shown on the keypad display unless the expansion card is installed on the inverter.

Protective Functions

Error Codes

Name	Cause（s）		Display on digital operator	Display on remote operator／copy unit
Over current	The inverter output was short－circuited，or the motor shaft is locked or has a heavy load．These conditions cause excessive current for the inverter，so the inverter output is turned OFF．	While at constant speed	E It	OC．Drive
		During deceleration	E 「込	OC．Decel
		During acceleration	E	OC．Accel
		Others	E $\quad 14$	Over．C
Overload protection＊1	When a motor overload is detected by the electronic thermal function，the inverter trips and turns OFF its output．		E M	Over．L
Braking resistor overload	When the regenerative braking resistor exceeds the usage time allowance or sage ratio，the inverter trips and turns OFF its output to the motor．		E E®	OL．BRD
Over voltage protection	When the DC bus voltage exceeds a threshold，due to regenerative energy from the motor．		E 17	Over．V
EEPROM error＊2，3	When the built－in EEPROM memory has problems due to noise or excessive temperature，the inverter trips and turns OFF its output to the motor．		E 19	EEPROM
Under－voltage error	A decrease of internal DC bus voltage below a threshold results in a control circuit fault．This condition can also generate excessive motor heat or cause low torque．The inverter trips and turns OFF its output．		E 19	Under．V
CPU error	A malfunction in the built－in CPU has occurred，so the inverter trips and turns OFF its output to the motor．		$E \quad 11$	CPU
			E ごコ	COMM．ERR
External trip	A signal on an intelligent input terminal configured as EXT has occurred．The inverter trips and turns OFF the output to the motor．		E Iこ	EXTERNAL
USP＊4	When the Unattended Start Protection（USP）is enabled，an error occurred when power is applied while a Run signal is present．The inverter trips and does not go into Run Mode until the error is cleared．		E 13	USP
Ground fault＊5	The inverter is protected by the detection of ground faults between the inverter output and the motor during powerup tests．This feature protects the inverter，and does not protect humans．		$E \quad 14$	GND．FIt
Input over－voltage	When the input voltage is higher than the specified value，it is detected 100 seconds after powerup and the inverter trips and turns OFF its output．		E 15	OV．SRC
Inverter thermal trip	When the inverter internal temperature is above the threshold，the thermal sensor in the inverter module detects the excessive temperature of the power devices and trips，turning the inverter output OFF．		E I	OH FIN
Gate array error	An internal inverter error has occurred in communications between the CPU and gate array IC．		E ヨ	GA
Thermistor	When a thermistor is connected to terminals［PTC］and［CM1］and the inverter has sensed the temperature is too high，the inverter trips and turns OFF the output．		E 30	TH
Communications error	The inverter＇s watchdog timer for the communications network has timed out．		E E	COMM

Note 1：Reset operations acceptable 10 seconds after the trip．
Note 2：If an EEPROM error（E08）occurs，be sure to confirm the parameter data values are still correct．
Note 3：EEPROM error may occer at power－on after shutting down the power while copying data with remote operator or initializing data．Shut down the power after completing copy or initialization．
Note 4：USP error occures at reseting trip after under－voltage error（E09）if USP is enabled．Reset once more to recover．
Note 5：Ground fault error（E14）cannot be released with resetting．Shut the power and check wiring．
How to access the details about the present fault

Connecting Diagram

Source type logic

Note 1: Common terminals are depend on logic.

Terminal	$1,2,3,4,5,6$	$\mathrm{H}, \mathrm{O}, \mathrm{OI}$	11,12
Common	Sink logic $: \mathrm{L}$	L	CM2
	Source logic : PCS		

Note 2: Choose proper inverter input volotage rating.

Using Dynamic breaking unit (BRD)

Wiring and Accessories

For Correct Operation

Application to Motors

Application to general-purpose motors

Operating frequency	The overspeed endurance of a general-purpose motor is 120% of the rated speed for 2 minutes (JIS C4,004). For operation at higher than 60 Hz , it is required to examine the allowable torque of the motor, useful life of bearings, noise, vibration, etc. In this case, be sure to consult the motor manufacturer as the maximum allowable rpm differs depending on the motor capacity, etc.
Torque characteristics	The torque characteristics of driving a general-purpose motor with an inverter differ from those of driving it using commercial power (starting torque decreases in particular). Carefully check the load torque characteristic of a connected machine and the driving torque characteristic of the motor.
Motor loss and temperature increase	The torque characteristics of driving a general-purpose motor with an inverter differ from those of driving it using commercial power
Noise	When run by an inverter, a general-purpose motor generates noise slightly greater than with commercial power.
Vibration	When run by an inverter at variable speeds, the motor may generate vibration, especially because of (a) unbalance of the rotor including a connected machine, or (b) resonance caused by the natural vibration frequency of a mechanical system. Particularly, be careful of (b) when operating at variable speeds a machine previously fitted with a constant speed motor. Vibration can be minimized by (1) avoiding resonance points using the frequency jump function of the inverter, (2) using a tire-shaped coupling, or (3) placing a rubber shock absorber beneath the motor base.
Power transmission	
mechanism	Under continued, low-speed operation, oil lubrication can deteriorate in a power transmission mechanism with an oil-type gear box (gear motor) or reducer. Check with the motor manufacturer for the permissible range of continuous speed. To operate at more than 60Hz, confirm the machine, s ability to withstand the centrifugal force generated.

Application to special motors

Gear motor	The allowable rotation range of continuous drive varies depending on the lubrication method or motor manufacturer. (Particularly in case of oil lubrication, pay attention to the low frequency range.)
Brake-equipped motor	For use of a brake-equipped motor, be sure to connect the braking power supply from the primary side of the inverter.
Pole-change motor	There are different kinds of pole-change motors (constant output characteristic type, constant torque characteristic type, etc.), with different rated current values. In motor selection, check the maximum allowable current for each motor of a different pole count. At the time of pole changing, be sure to stop the motor. Also see: Application to the 400V-class motor.
Submersible motor	The rated current of a submersible motor is significantly larger than that of the general-purpose motor. In inverter selection, be sure to check the rated current of the motor.
Explosion-proof motor	Inverter drive is not suitable for a safety-enhanced explosion-proof type motor. The inverter should be used in combination with a pressure-proof explosion-proof type of motor. *Explosion-proof verification is not available for SJ200 Series.
Synchronous (MS) motor High-speed (HFM) motor	In most cases, the synchronous (MS) motor and the high-speed (HFM) motor are designed and manufactured to meet the specifications suitable for a connected machine. As to proper inverter selection, consult the manufacturer.
Single-phase motor	A single-phase motor is not suitable for variable-speed operation by an inverter drive. Therefore, use a three-phase motor.

Application to the 400V-class motor

A system applying a voltage-type PWM inverter with IGBT may have surge voltage at the motor terminals resulting from the cable constants including the cable length and the cable laying method. Depending on the surge current magnification, the motor coil insulation may be degraded. In particular, when a 400 V -class motor is used, a longer cable is used, and critical loss can occur, take the following countermeasures:
(1) install the LCR filter between the inverter and the motor,
(2) install the AC reactor between the inverter and the motor, or
(3) enhance the insulation of the motor coil.

Notes on Use

Drive

Run/Stop	Run or stop of the inverter must be done with the keys on the operator panel or through the control circuit terminal. Do not operate by installing a electromagnetic contactor (MC) in the main circuit.
Emergency motor stop	When the protective function is operating or the power supply stops, the motor enters the free run stop state. When an emergency stop is required or when the motor should be kept stopped, use of a mechanical brake should be considered.
High-frequency run	A max. 400 Hz can be selected on the SJ200 Series. However, a two-pole motor can attain up to approx. 24,000 rpm, which is extremely dangerous. Therefore, carefully make selection and settings by checking the mechanical strength of the motor and connected machines. Consult the motor manufacturer when it is necessary to drive a standard (general-purpose) motor above 60 Hz. A full line of high-speed motors is available from Hitachi.

Installation location and operating environment

Avoid installation in areas of high temperature, excessive humidity, or where moisture can easily collect, as well as areas that are dusty, subject to corrosive gasses, mist of liquid for grinding, or salt. Install the inverter away from direct sunlight in a well-ventilated room that is free of vibration. The inverter can be operated in the ambient temperature range from -10 to $50^{\circ} \mathrm{C}$. (Carrier frequency and output current must be reduced in the range of 40 to $50^{\circ} \mathrm{C}$.)

For Correct Operation

Main power supply

Installation of an
AC reactor on the input side

In the following examples involving a general-purpose inverter, a large peak current flows on the main power supply side, and is able to destroy the converter module. Where such situations are foreseen or the connected equipment must be highly reliable, install an AC reactor between the power supply and the inverter. Also, where influence of indirect lightning strike is possible, install a lightning conductor.
(A) The unbalance factor of the power supply is 3% or higher. (Note)
(B) The power supply capacity is at least 10 times greater than the inverter capacity (the power supply capacity is 500 kVA or more).
(C) Abrupt power supply changes are expected.

Examples:
(1) Several inverters are interconnected with a short bus.
(2) A thyristor converter and an inverter are interconnected with a short bus.
(3) An installed phase advance capacitor opens and closes.

In cases $(A),(B)$ and (C), it is recommended to install an AC reactor on the main power supply side.
Note: Example calculation with $\mathrm{V}_{\text {RS }}=205 \mathrm{~V}, \mathrm{~V}_{\mathrm{St}}=201 \mathrm{~V}, \mathrm{~V}_{\mathrm{TR}}=200 \mathrm{~V}$
$V_{\text {As }}$: $R-S$ line voltage, $\mathrm{V}_{\text {st }}$: $\mathrm{S}-\mathrm{T}$ line voltage, $\mathrm{V}_{\text {tв }}$: $\mathrm{T}-\mathrm{R}$ line voltage

Using a private power

 generatorAn inverter run by a private power generator may overheat the generator or suffer from a deformed output voltage waveform of the generator. Generally, the generator capacity should be five times that of the inverter (kVA) in a PWM control system, or six times greater in a PAM control system.

Notes on Peripheral Equipment Selection

Wiring connections
Electromagnetic contactor

Wiring

between
inverter and
motor
Thermal relay
(1) Be sure to connect main power wires with $\mathrm{R}(\mathrm{L} 1), \mathrm{S}(\mathrm{L} 2)$, and $\mathrm{T}(\mathrm{L} 3)$ terminals (input) and motor wires to $\mathrm{U}(\mathrm{T} 1), \mathrm{V}(\mathrm{T} 2)$, and $\mathrm{W}(\mathrm{T} 3)$ terminals (output). (Incorrect connection will cause an immediate failure.)
(2) Be sure to provide a grounding connection with the ground terminal (Θ).

When an electromagnetic contactor is installed between the inverter and the motor, do not perform on-off switching during running operation.
When used with standard applicable output motors (standard three-phase squirrel-cage four-pole motors), the SJ200 Series does not need a thermal relay for motor protection due to the internal electronic protective circuit. A thermal relay, however, should be used:

- during continuous running outside a range of 30 to 60 Hz .
- for motors exceeding the range of electronic thermal adjustment (rated current).
- when several motors are driven by the same inverter; install a thermal relay for each motor.
- The RC value of the thermal relay should be more than 1.1 times the rated current of the motor. Where the wiring length is 10 m or more, the thermal relay tends to turn off readily. In this case, provide an AC reactor on the output side or use a current sensor.

Installing a circuit breaker
Install a circuit breaker on the main power input side to protect inverter wiring and ensure personal safety. Choose an invertercompatible circuit breaker. The conventional type may malfunction due to harmonics from the inverter. For more information, consult the circuit breaker manufacturer.
The wiring distance between the inverter and the remote operator panel should be 20 meters or less. When this distance isexceeded, use CVD-E (current-voltage converter) or RCD-E (remote control device). Shielded cable should be used on thewiring. Beware of voltage drops on main circuit wires. (A large voltage drop reduces torque.)
If the earth leakage relay (or earth leakage breaker) is used, it should have a sensitivity level of 15 mA or more (per inverter).
Do not use a capacitor for power factor improvement between the inverter and the motor because the high-frequency components of the inverter output may overheat or damage the capacitor.

High-frequency Noise and Leakage Current

(1) High-frequency components are included in the input/output of the inverter main circuit, and they may cause interference in a transmitter, radio, or sensor if used near the inverter. The interference can be minimized by attaching noise filters (option) in the inverter circuitry.
(2) The switching action of an inverter causes an increase in leakage current. Be sure to ground the inverter and the motor.

Lifetime of Primary Parts

Because a DC bus capacitor deteriorates as it undergoes internal chemical reaction, it should normally be replaced every five years. Be aware, however, that its life expectancy is considerably shorter when the inverter is subjected to such adverse factors as high temperatures or heavy loads exceeding the rated current of the inverter.The approximate lifetime of the capacitor is as shown in the figure at the right when it is used 12 hours daily (according to the " Instructions for Periodic Inspection of General-Purpose Inverter " (JEMA).)Also, such moving parts as a cooling fan should be replaced. Maintenance inspection and parts replacement must beperformed by only specified trained personnel.

Precaution for Correct Usage

- Before use, be sure to read through the Instruction Manual to insure proper use of the inverter.
- Note that the inverter requires electrical wiring; a trained specialist should carry out the wiring.
- The inverter in this catalog is designed for general industrial applications. For special applications in fields such as aircraft, outer space, nuclear power, electrical power, transport vehicles, clinics, and underwater equipment, please consult with us in advance.
- For application in a facility where human life is involved or serious losses may occur, make sure to provide safety devices to avoid a serious accident.
- The inverter is intended for use with a three-phase AC motor. For use with a load other than this, please consult with us.

