HITACHI PROGRAMMABLE CONTROLLER

MICRO-EH BASIC UNIT (64 points type)

APPLICATION MANUAL

WARNING

To ensure that the equipment described by this manual. As well as all equipment connected to and used with it, operate satisfactorily and safely, all applicable local and national codes that apply to installing and operating the equipment must be followed. Since codes can vary geographically and can change with time, it is the user's responsibility to determine which standard and codes apply, and to comply with them.

FAILURE TO COMPLY WITH APPLICABLE CODES AND STANDARDS CAN RESULT IN DAMAGE TO EQUIPMENT AND/OR SERIOUS INJURY TO PERSONNEL. INSTALL EMERGENCY POWER STOP SWITCH WHICH OPERATES INDEPENDENTLY OF THE PROGRAMMABLE CONTROLLER TO PROTECT THE EQUIPMENT AND/OR PERSONNEL IN CASE OF THE CONTROLLER MALFUNCTION.

Personnel who are to install and operate the equipment should carefully study this manual and any others referred to by it prior to installation and / or operation of the equipment. Hitachi, Ltd. constantly strives to improve its products, and the equipment and the manual(s) that describe it may be different from those already in your possession.

If you have any questions regarding the installation and operation of the equipment, or if more information is desired, contact your local Authorized Distributor or Hitachi, Ltd.

IMPORTANT

THIS EQUIPMENT GENERATES, USES, AND CAN RADIATE RADIO FREQUENCY ENERGY AND, IF NOT INSTALLED AND USED IN ACCORDANCE WITH THE INSTRUCTION MANUAL, MAY CAUSE INTERFERENCE TO RADIO COMMUNICATIONS. AS TEMPORARILY PERMITTED BY REGULATION, IT HAS NOT BEEN TESTED FOR COMPLIANCE WITH THE LIMITS FOR CLASS A COMPUTING DEVICES PURSUANT TO SUBPART J OF PART 15 OF FCC RULES, WHICH ARE DESIGNED TO PROVIDE REASONABLE PROTECTION AGAINST SUCH INTERFERENCE.

OPERATION OF THIS EQUIPMENT IN A RESIDENTIAL AREA IS LIKELY TO CAUSE INTERFERENCE IN WHICH CASE THE USER, AT HIS OWN EXPENSE, WILL BE REQUIRED TO TAKE WHATEVER MEASURES MAY BE REQUIRED TO CORRECT THE INTERFERENCE.

LIMITED WARRANTY AND IMITATION OF LIABILITY

Hitachi, Ltd. (Hitachi) warrants to the original purchaser that the programmable controller (PLC) manufactured by Hitachi is free from defects in material and workmanship under normal use and service. The obligation of Hitachi under this warranty shall be limited to the repair or exchange of any part or parts which may prove defective under normal use and service within eighteen (18) months from the date of manufacture or twelve (12) months from the date of installation by the original purchaser which ever occurs first, such defect to be disclosed to the satisfaction of Hitachi after examination by Hitachi of the allegedly defective part or parts. This warranty in expressly in lieu of all other warranties expressed or implied including the warranties of merchantability and fitness for use and of all other obligations or liabilities and Hitachi neither assumes, nor authorizes any other person to assume for Hitachi, any other liability in connection with the sale of this PLC. This warranty shall not apply to this PLC or any part hereof which has been subject to accident, negligence, alteration, abuse, or misuse. Hitachi makes no warranty whatsoever in respect to accessories or parts not supplied by Hitachi. The term "original purchaser", as used in this warranty, shall be deemed to mean that person for whom the PLC in originally installed.

In no event, whether as a result of breach of contract, warranty, tort (including negligence) or otherwise, shall Hitachi or its suppliers be liable for any special, consequential, incidental or penal damages Including, but not limited to, loss of profit or revenues, loss of use of the products or any associated equipment, damage to associated equipment, cost of capital, cost of substitute products, facilities, services or replacement power, down time costs, or claims of original purchaser's customers for such damages.

To obtain warranty service, return the product to your distributor, or send it with a description of the problem, proof of purchase, post paid, insured, and in a suitable package to:

Quality Assurance Dep. Hitachi Industrial Equipment Systems Co., Ltd. 46-1, Ooaza-Tomioka Nakajo-machi Kitakanbara-gun, Niigata-ken 959-2608 JAPAN

Copyright 2004 by Hitachi Industrial Equipment Systems Co., Ltd. All Rights reserved - Printed in Japan

The information and/or drawings set forth in this document and all rights in and to inventions disclosed herein and patents which might be granted thereon disclosing or employing and the materials, techniques or apparatus described herein are the exclusive property of Hitachi, Ltd.

No copies of the information or drawings shall be made without the prior consent of Hitachi, Ltd.

Hitachi, Ltd. provides customer assistance in varied technical areas. Since Hitachi does not posses full access to data concerning all of the uses and applications of customer's products, responsibility is assumed by Hitachi neither for customer product design nor for any infringements of patents or rights of others which may result from Hitachi assistance.

The specifications and descriptions contained in this manual were accurate at the time they were approved for printing. Since Hitachi, Ltd. Incorporated constantly strives to improve all its products, we reserve the right to make changes to equipment and/or manuals at any time without notice and without incurring any obligation other than as noted in this manual.

Hitachi, Ltd. assumes no responsibility for errors that may appear in this manual.

As the product works with user program and Hitachi, Ltd. cannot test all combination of user program components, it is assumed that a bug or bugs may happen unintentionally. If it is happened: please inform the fact to Hitachi, Ltd. or its representative. Hitachi will try to find the reason as much as possible and inform the countermeasure when obtained.

Nevertheless Hitachi, Ltd. intends to make products with enough reliability, the product has possibility to be damaged at any time. Therefore personnel who are to install and operate the equipment has to prepare with the counter-measure such as power off switch can be operated independently of the controller. Otherwise, it can result in damage to equipment and/or serious injury to personnel.

Safety Precautions

Read this manual and attached documents thoroughly before installing and operating this unit, and performing maintenance or inspection of this unit in order to use the unit correctly. Be sure to use this unit after acquiring adequate knowledge of the unit, all safety information, and all precautionary information. Also, be sure to deliver this manual to the person in charge of maintenance.

Safety caution items are classified as "Danger" and "Caution" in this document.

Cases in which, if handled incorrectly, a dangerous situation may occur, resulting in possible death or severe injury.

Cases in which, if handled incorrectly, a dangerous situation may occur, resulting in possible minor to medium injury to the body, or only mechanical failure.

However, depending on the situation, items marked with

JTION may result in major accidents.

Both of these items contain important safety information, so be sure to follow them closely.

Icons for prohibited items and required items are shown below:

: Indicates a prohibited item (item that cannot be performed). For example, when open flames are prohibited, is shown.

Indicates a required item (item that must be performed). For example, when grounding must be performed, is shown.

1. Installation

- Use this product in an environment as described in the catalogue and this document. If this product is used in an environment subject to high temperature, high humidity, excessive dust, corrosive gases, vibration or shock, it may result in an electric shock, fire or malfunction.
- Installation this product according to the instructions in this manual. If installation is not performed correctly, it may result in falling, malfunction, or an operational error of the unit.
- Never allow foreign objects such as wire chips to enter the unit. They may cause a fire, malfunction, or failure.

2. Wiring

REQUIRED

• Always perform grounding (FE terminal).

If grounding is not performed, there is a risk of an electric shock or malfunction.

• Connect a power supply that meets the rating.

If a power supply that does not meet the rating is connected, it may result in a fire.

• Any wiring operation should only be performed by a qualified technician. If wiring is performed incorrectly, it may result in a fire, failure, or electric shock.

3. Precautions When Using the Unit

DANGER Never touch the terminals while the power is on. There is a risk of an electric shock. Configure the emergency stop circuit, interlock circuit and other related circuits external to the programmable controller (referred to as the PLC in this document). Otherwise, a failure in the PLC may damage the equipment or result in a serious accident. Never interlock the unit with the external load via the relay drive power supply of the relay output module.

- Before performing program change, forced output, run, stop and other operations while the unit is in operation, be sure to check the validity of the applicable operation and safety.
 An operation error may damage the equipment or result in a serious accident.
- Be sure to power on the unit according to the designated power-on sequence. Otherwise, an erroneous operation may damage the equipment or result in a serious accident.

4. Maintenance

DANGER

• Never connect the \oplus and \bigcirc of the battery in reverse. Also, never charge, disassemble, heat, place in fire, or short circuit the battery.

There is a risk of an explosion or fire.

S PROHIBITED

• Never disassemble or modify the unit. These actions may result in a fire, malfunction, or failure.

• Be sure to turn off the power supply before removing or attaching the module/unit. Otherwise, it may result in an electric shock, malfunction, or failure.

Table of Contents

Chapter	1 Introduction	1-1 to 1-2
1.1	Before use	
1.2	Features	
Chapter	2 MICRO64 Unit	
2.1	Name and function of each part	2-1
2.2	General Specifications	2-4
2.3	Performance Specifications	2-5
2.4	Power Supply for Sensor	2-5
2.5	Input specifications	
2.6	Output specifications	
Chapter	3 Programming	
3.1	Memory size and Memory assignment	
3.2	I/O assignment	
3.3	Internal output, Edge, Timer	
Chapter	4 Special I/O	
4.1	Introduction	
4.2	Setting of special I/O	
4.3	Operation mode	
4.4	Function setting of special I/O	
4.5	High Speed Counter (HSC)	
4.6	PWM output	
4.7	Pulse train output	
Chapter	5 Communication port	5-1 to 5-4
5.1	Dedicated port	5-1
5.2	General-purpose port	5-4
Chapter	6 Special internal output	6-1 to 6-3
6.1	Special internal output (bit)	
6.2	Special internal output (word)	6-2
Chapter	7 Error code	7-1 to 7-2
Chapter	8 Additional commands	
8.1	Additional command list	
8.2	Changed command list	
8.3	Command specifications	
0.0		

Chapte	r 9 Option board	9-1 to 9-11
9.1	Mounting, Dismounting	9-1
9.2	Memory board	9-4
9.3	RS-232C Communication board	
9.4	RS-422 / 485 Communication board	
9.4	USB board	9-11

Chapter 1 Introduction

Thank you for using the Hitachi MICRO-EH Programmable Controller series (hereinafter called PLC).

This manual describes how to use the MICRO-EH 64 points type basic unit (hereinafter called MICRO64). Please refer to the MICRO-EH application manual (NJI-349*) about common contents with MICRO-EH series other than description in this book.

The MICRO-EH application manual has the following contents.

	Chapter	Contents	
Chapter 1	Features	About the features of MICRO-EH series.	
Chapter 2	System overview	The example of a system overview of MICRO-EH series	
Chapter 3	Function and Performance Specifications	About various specifications (general specification, functional specification etc.)	
Chapter 4	Product lineup and wiring	The name and function of each part of a unit.	
Chapter 5	Instruction Specifications	The function of various ladder commands, the example of programming	
Chapter 6	I/O Specifications	About an external I/O number and an internal output number	
Chapter 7	Programming	About programming device and the programming method	
Chapter 8 High speed counter, PWM/Pulse train output and Analogue I/O		The setting method and directions of High speed counter / PWM, Pulse output.	
Chapter 9	PLC Operation	About the processing method of a program. (From an operation start to under operation)	
Chapter 10	PLC Installation, Mounting, Wiring	About installation of MICRO-EH, and wiring	
Chapter 11	Communication Specifications	The specification of a communication port, the setting method, etc.	
Chapter 12	Error Code List and Special Internal Outputs	About error code details and the special internal outputs.	
Chapter 13	Troubleshooting	The management flow at the time of trouble generating	
Chapter 14	Operation Examples	An easy example explains even from creation of a program to transmission and operation.	
Chapter 15	Daily and Periodic Inspections	About the item checked every day or periodically	

Table 1.1	Contents of application manual
	Contonito or application mandal

1.1 Before use

Great care has been taken in the manufacture of this product, but it is advised that the following points are checked immediately after purchase.

- 1. Is the model the same one that you ordered?
- 2. Is not the product damaged?

3. Is not any of the accessories listed in table 1.2 missing?

Contact your dealer in the event of any defects being discovered.

 Table 1.2
 List of accessories supplied with the MICRO64

No.	Products name	Model name	Outlook	Q'ty	Remarks
1	MICRO-64	EH-A64DR EH-D64DR EH-D64DT EH-D64DTPS		1	
2	Instruction manual	NJI-465(X)		1	

1.2 Features

MICRO64 is all-in-one compact type PLC which has the following features in addition to existing MICRO-EH series (10, 14, 23, and 28-point type).

■ Increase in I/O points

MICRO64 has 40 inputs and 24 outputs. The number of I/O points is expandable to 176 points with 4 expansion units.

Increase in programming memory and data memory (WR)

Program capacity is extended to 16k steps, and data memory capacity is extended to 32k words, which enables MICRO64 to support middle range applications.

New FUN commands

53 kinds of FUN commands and one application command are added. The added FUN commands are a data conversion command, a floating point arithmetic, etc. (they are the command currently supported by EH-150 series.)

32 bits counter

The counter of MICRO64 can support up to 100kHz(single phase) or 60kHz (2-phase) pulses. The 16-bit counter is extended to the 32-bit counter.

Pulse train output

A pulse output with an output frequency of 65kHz is possible for MICRO64. Moreover, the number of output pulses can be set up by 32 bits. (32bit pulse is supported by software ver. 1.01 or later.)

PWM output

A pwm output with an output frequency of 65kHz is possible for MICRO64.

Compatibility with current MICRO-EH series

The command system of MICRO64 does not change with current MICRO-EH. Ladder program for the current MICRO-EH works on MICRO64 also. In addition, it is possible to connect existing expansion unit.

Selectable option boards

A function is expandable by attaching an option board in a basic unit. The following option boards will be released. • RS-422/485 communication board

- ... RS-422/485 Interface. It can be used as an programming port or a general-purpose port.
 - 10 bits analog inputs (2ch) are attached.
- RS-232C communication board
 - ... RS-232C Interface. It can be used as an programming port or a general-purpose port. 10 bits analog inputs (2ch) are attached.
- Memory board
 - ... It can be used for backup of a user program etc.

Caution

Since above option boards have not been released yet, the first version of MICRO64 may not support all the option boards.

LED indication for FLASH memory writing of user program

If a power supply is turned off during FLASH memory writing, "user memory error (error code 31)" may occur at the next time of a power supply ON.

In the current MICRO-EH, it was monitored in special internal output(R7EF). In MICRO64, this can be visually checked in OK LED.

Chapter 2 MICRO64 Unit

2.1 Name and function of each part

Terminal layout and wiring

EH-A64DR (AC power type)

* For the DC input, both sink and source type are available. It is possible to reverse the polarity of 24VDC.

Wiring to the output terminals

EH-D64DTPS (DC power type) (Input wiring is same as EH-A64DR)

EH-D64DT (DC power type) (Input wiring is same as EH-A64DR)

Wiring to the output terminals

Item	Transistor output (sink type) (EH-*64DT)	Transistor output (source type) (EH-*64DTPS)
External wiring	POW [0] [2] [C0] POW (1] [V0] Fuse Diode	POW [0] [2] [C0] POW (1] [V0] Fuse Diode

2.2 General Specifications

Item	Specification					
Power supply type	AC				DC	
Power voltage	100/110/12	0 V AC (50	/60 Hz),		24 V DC	
-	200/220/24	0 V AC (50	/60 Hz)			
Power voltage fluctuation	85 to 264 V	AC wide r	ange		19.2 to 30 V DC	
range						
Current consumption	100 V	/ AC	264 V	/ AC	Normal	Rush
	Normal	Rush	Normal	Rush	0.5 A	0.6 A
	0.4 A	15 A	0.2 A	40 A	0.5 A	0.6 A
Allowable momentary power	85 to 100 V	AC:			19.2 to 30 V DC:	
failure	For a mon	nentary pow	er failure of	less than	For a momentary powe	er failure of less than
	10 ms, ope	eration conti	inues		10 ms, operation contin	nues
	100 to 264					
			er failure of	less than		
	· 1	eration conti	inues			
Operating ambient temp.	0 to 55 °C					
Storage ambient temp.	-10 to 75 °C					
Operating ambient humidity	5 to 95 % RH (no condensation)					
Storage ambient humidity	5 to 95 % RH (no condensation)					
Vibration proof	Conforms to	o JIS C 091	1			
Noise resistance	O Noise voltage 1,500 Vpp Noise pulse width 100 ns, 1 µs					
	(Noise created by the noise simulator is appli					oly module's input
	terminals. This is determined by our measuring method.)					
	O Based on NEMA ICS 3-304 O Static noise: 3,000 V at metal exposed area					
	O Conforms with EN50081-2 and EN50082-2					
Supported standards	Conforms with UL, CE markings and C-TICK					
Insulation resistance	20 M Ω or more between the AC external termin		nal and the protection ear	th (PE) terminal		
	(based on 500 V DC megger)					
Dielectric withstand voltage				external terminal and the	e protection earth (PE)	
Grounding	terminal Class D dedicated grounding (grounded by a power supply module)					
Environment used	No corrosive gases and no excessive dirt					
Structure	Attached on an open wall					
Cooling	Natural air cooling					
Cooning						

2.3 Performance Specifications

Spec.	Item			64 pts. type	[Reference] 28 pts. type	
Control	CPU			32-bit RISC processor		
Spec.	Processing system			Stored program cyclic system		
	Processing	Basic		0.9 µs / instruction		
	Speed	Application		Several 10 µs / instruction		
	User program memory			16 k steps max. (FLASH memory)	3 ksteps max. (FLASH memory)	
Operation Spec.	Ladder	Basic		$39 \text{ types such as} \qquad \qquad$		
	Arithmetic Application			132 types such as arithmetic, application, control, FUN, etc.	78 types such as arithmetic, application, control, FUN, etc.	
I/O	External	I/O processi	ing system	Refresh processing		
processing	I/O	Max. number	er of points	176 pts.	140 pts.	
Spec.	Internal	Bit		1,984 pts. (R0 to R7BF)		
_	output	output Word		32,768 words (WR0 to WR7FFF)	4,096 words (WR0 to WRFFF)	
	Special		Bit	64 pts. (R7C0 to R7FF)		
		-	Word	512 words (WRF000 to WRF1FF)		
		Bit/Word shared		16,384 pts. 1,024 words (M0 to M3FFF, WM0 to WM3FF)		
	Timer /	Number of	points	512 pts. (TD+CU) However, TD is up to 256 pts. * ¹		
	counter	Timer set va	alue	0 to 65,535, timer base 0.01 s, 0.1 s, 1 s		
				(64 pts. are maximum for 0.01 s $*^2$)		
		Counter set	value	1 to 65,535 times		
	Edge detection			512 pts. (DIF0 to DIF511:decimal)		
D · 1 · 1	5			+ 512 pts. (DFN0 to DFN511:decim		
Peripheral	Program sys			Command language, ladder program		
equipment	Peripheral unit			Programming software		
				(LADDER EDITOR DOS version / Windows® version, Pro-H)		
				Command language programmer, portable graphic programmer cannot be used.		

*1 The same numbers cannot be shared by the timer and the counter. TD is 0 to 255.

*2 Only timers numbered 0 to 63 can use 0.01s for their time base.

2.4 Power Supply for Sensor

The 24 V terminal at the input terminal part can supply current to external equipment.

If this terminal is used as the power supply for the input part of this unit, the remaining can be used as power supply for the sensors.

The following current (I) can be supplied as power supply for the sensors.

EH-A64DR / EH-D64DR (64pts type basic unit)

I =	435 mA	_	(5 mA* \times number of input points that are turned on at the				
same tim	ne)						
	- (5 mA × number of output points that are turned on at the same time)						
* : X0, X2, X4, X6 - 10mA.							

2.5 Input specifications

	tem	Specif	ication	Internal Circuit	
nem		X0, X2, X4, X6 Except the following			
Input volta	ge	24V	DC		
Allowable inp	out voltage range	0 to 30	OV DC		
Input impe	dance	Approximately 2.7 kΩ	Approximately 4.7 kΩ		
Input curre	ent	8 mA typical	4.8 mA typical		
Operating	ON voltage	18 VDC (min) / 4.5mA (max)	18 VDC (min) / 3.3mA (max)		
voltage	OFF voltage	5 VDC (min) / 1.8mA (max)	5 VDC (max) / 1.6mA (max)		
Input lag	OFF ➔ ON	2 to 20 ms (user setup is possible.) *			
	ON → OFF	2 to 20 ms (user setup is possible.) *			
Number of	input points	40 pts. (Refer to "2.1 terminal arrangement and wiring")			
Number of a	common points	2 pts. (Refer to "2.1 terminal arrangement and wiring")			
Polarity		None			
Insulation system		Photocoupler insulation			
Input display		LED (Green)			
External co	onnection	Removable type screw	v terminal block (M3)		

• The digital filter of MICRO64 is 2 - 20ms (WRF07F setting values 4-40). If 0-3 are set up, it will become a setup for 2ms.

• There is 2ms delay by hardware. If set up the filter time at 2ms, actual delay is from 2ms to 4ms.

■ High speed counter

Item		Single	2-phase	
Choices for counter input channels		X0, X2, X4, X6	Use X0 and X2 in pair / Use X4 and X6 in pair	
Input voltage	ON		18 V	
	OFF	5 V		
Width of count p	ulse	10 µs	17 µs	
Maximum count frequency		100 kHz	60 kHz	
Count register		16 bits / 32 bits (depend on operation mode)		
Coincidence output		Possible (or assigned as standard output)		
ON / OFF preset		Possible (or assigned as standard output)		
Upper / lower limit setting		Impossible(16 bits counter : ring counter 0 to 65,535)(32 bits counter : ring counter 0 to 4,294,967,295)		
Pre-load / Strobe	e	Possible (or assigned as standard input)		

2.6 Output specifications

(1) Relay output

Ite	m	Specification	Internal Circuit	
Rated load voltage		5 to 250V AC, 5 to 30V DC		
Minimum switch	ing current	1 mA]	
Maximum	1 circuit	2A (24V DC, 240V AC)		
load current	1 common	5A		
Output	OFF → ON	15 ms (max)		
response time	ON → OFF	15 ms (max)		
Number of outpo	ut points	24 pts. (Refer to "2.1 terminal arrangement and wiring")		
Number of com	mon points	9 pts. (Refer to "2.1 terminal arrangement and wiring")		
Surge removal of	circuit	None	Gircuit	
Fuse		None		
Insulation system	m	Relay insulation		
Output display		LED (Green)		
External connec	tion	Removable type screw terminal block (M3)		
Externally supplied power (For driving relays)		Not used		
Contact life ^{*1}		20,000,000 times (mechanical) 200,000 times (electrical : 2A)		
Insulation		1500V or more (external - internal) 500V or more (external - external)		

*1 : Please refer to the following figure.

Life of relay contacts

Since the lifetime of relay contact is in inverse proportion to squared current, be aware that interrupting rush current or directly driving the condenser load will drastically reduce the life of the relay.

If switching frequency is very high, transistor output is recommended to use.

Item		Specification	Circuit diagram
Output specification		Transistor output	
Rated load volta	ge	24/12 V DC (+10 %, -15 %)	1
Minimum switching current		1 mA	1
Leak current	•	0.1 mA (max)	Sink type [EH-D64T]
Maximum	1 circuit	0.5 A 24 V DC / 0.3 A 12 V DC	
load current	1 common	2.0 A	(Y100-Y103)
Output	OFF → ON	1 µs (max) 24 V DC 0.2A	
response time	ON → OFF	1 µs (max) 24 V DC 0.2A	
Number of output points		4 pts.	1∦┌─┐ │ │ │ ↓ ▲
-	-	(Refer to "2.1 terminal arrangement and wiring")	
Number of comr	non *1	1 pts.	
		(Refer to "2.1 terminal arrangement and wiring")	
Surge removing	circuit	None	
Fuse		None	
Insulation syster	n	Photocoupler insulation	
Output display		LED (green)	
External connection		Removable type screw terminal block (M3)	
Externally supplied power *2		12 to 30 V DC	1
Insulation		1500 V or more (external-internal)	1
		500 V or more (external-external)	
Output voltage c	Irop	0.3 V DC (max)	1

(2) DC output ... LCDC-low Current (Y100 - Y103)

*1: V and C terminals are separated each output terminal. Refer to "2.1 terminal arrangement and wiring" for further information.

*2: It is necessary to supply 12 to 30 V DC between the V and C terminals externally.

Specification Item Circuit diagram Output specification Transistor output Rated load voltage 24/12 V DC (+10 %, -15 %) Minimum switching current 1 mA Leak current 0.1 mA (max) Source type [EH-D64T] Maximum 1 circuit 0.5 A 24 V DC / 0.3 A 12 V DC (Y104-Y123) load current 1 common 2.0 A 1 µs (max) 24 V DC 0.2A Output OFF → ON response time ON → OFF 1 µs (max) 24 V DC 0.2A Number of output points 4 pts. (Refer to "2.1 terminal arrangement and wiring") Internal circuit Number of common *1 1 pts. OUT (Refer to "2.1 terminal arrangement and wiring") Surge removing circuit None Fuse None Insulation system Photocoupler insulation C Output display LED (green) External connection Removable type screw terminal block (M3) Externally supplied power *2 12 to 30 V DC Insulation 1500 V or more (external-internal) 500 V or more (external-external) Output voltage drop 0.3 V DC (max)

(3) DC output ... LCDC-low Current (Y104 - Y123)

*1: V and C terminals are separated each output terminal. Refer to "2.1 terminal arrangement and wiring" for further information. *2: It is necessary to supply 12 to 30 V DC between the V and C terminals externally.

Ite	m	Specification	Circuit diagram		
Output specific	ation	Transistor output			
Rated load volt		24/12 V DC (+10 %, -15 %)			
Minimum switc		1 mA			
Leak current		0.1 mA (max)			
Maximum	1 circuit	0.5 A 24 V DC / 0.3 A 12 V DC	Source type [EH-D64TPS]		
load current	1 common	2.0 A	(Y100-Y103)		
Output	OFF → ON	1 µs (max) 24 V DC 0.2A	V		
response time	ON → OFF	1 µs (max) 24 V DC 0.2A			
Number of outp	out points	4 pts.			
		(Refer to "2.1 terminal arrangement and wiring")			
Number of com	nmon *1	1 pts.			
		(Refer to "2.1 terminal arrangement and wiring")			
Surge removin	g circuit	None			
Fuse		None			
Insulation syste	em	Photocoupler insulation			
Output display		LED (green)			
External connection		Removable type screw terminal block (M3)	¥		
Externally supplied power *2		12 to 30 V DC			
Insulation		1500 V or more (external-internal)			
		500 V or more (external-external)			
Output voltage	drop	0.3 V DC (max)			

(4) DC output ... LCDC-low Current (Y100 - Y103)

*1: V and C terminals are separated each output terminal. Refer to "2.1 terminal arrangement and wiring" for further information.

*2: It is necessary to supply 12 to 30 V DC between the V and C terminals externally.

(5) DC output (ESCP type) ... LCDC-Low Current (Y104-Y119)

Item		Specification	Circuit diagram		
Output specification		Transistor output			
Rated load voltage		24/12 V DC (+10 %, -15 %)			
Minimum switching current		10 mA			
Leak current		0.1 mA (max)			
Maximum	1 circuit	0.7 A	Source type [EH-D64TPS]		
load current	1 common	2.8 A	(Y104-Y119)		
Output	OFF → ON	1 ms (max) 24 V DC	V		
response time	ON → OFF	1 ms (max) 24 V DC			
Number of output points		16 pts. (Refer to "2.1 terminal arrangement and wiring")			
Number of com	nmon *1	2 pts. (Refer to "2.1 terminal arrangement and wiring")			
Surge removing	g circuit	None			
Fuse		None			
Insulation syste	em	Photocoupler insulation			
Output display		LED (green)	C		
External connection		Removable type screw terminal block (M3)			
Externally supplied power *2		12 to 30 V DC			
Insulation		1500 V or more (external-internal) 500 V or more (external-external)			
Output voltage	drop	0.3 V DC (max)			

*1: V and C terminals are separated each output terminal. Refer to "2.1 terminal arrangement and wiring" for further information.

*2: It is necessary to supply 12 to 30 V DC between the V and C terminals externally.

(6) DC output (ESCP type) ... HCDC-High Current (Y120-Y123)

Item		Specification	Circuit diagram
Output specific	ation	Transistor output	
Rated load voltage		24/12 V DC (+10 %, -15 %)	
Minimum switc	hing current	10 mA	
Leak current		0.1 mA (max)	
Maximum	1 circuit	1.0 A	Source type [EH-D64TPS]
load current	1 common	3.0 A	(Y120-Y123)
Output	OFF → ON	1 ms (max) 24 V DC	V
response time	ON → OFF	1 ms (max) 24 V DC	● ● ● ■ ■
Number of outp	out points	4 pts.	
		(Refer to "2.1 terminal arrangement and wiring")	
Number of com	nmon *1	1 pts.	
		(Refer to "2.1 terminal arrangement and wiring")	
Surge removing	g circuit	None	
Fuse		None	
Insulation syste	em	Photocoupler insulation	
Output display		LED (green)	C C
External connection		Removable type screw terminal block (M3)	Y
Externally supplied power *2		12 to 30 V DC	
Insulation		1500 V or more (external-internal)	
		500 V or more (external-external)	
Output voltage	drop	0.3 V DC (max)	

*1: V and C terminals are separated each output terminal. Refer to "2.1 terminal arrangement and wiring" for further information. *2: It is necessary to supply 12 to 30 V DC between the V and C terminals externally.

Pulse train output / PWM output

Item	64 pts. type Transistor output
Available outputs	Y100-Y103 (optional)
Load voltage	12 / 24 V
Minimum load current	1 mA
PWM max. output frequency	65,535 Hz
Pulse train max. output frequency	65,535 Hz

* : Please do not use a relay output type as a pulse output.

Chapter 3 Programming

3.1 Memory size and Memory assignment

Table 3.1 lists the programming specifications for the MICRO64.

Table 3.1	Programming	specifications
1 4010 011	i iogiaiiiiiig	opoonnounorno

No.	ITE	EM	64 pts type	[Reference] 28 pts type	
1	Program size		16k steps	3 k steps (3,072 steps)	
2	Memory assignment		RAM-16H	RAM-04H	
3	Instruction size		32 bits / 1step		
4	Memory specification SRAM		Backup with optional battery.		
	FLASH		Backup without battery.		
5	Program language		H-series ladder/instruction language		
6	Program creation		Created with H-series programming devices		
7	Program modification	rogram modification in STOP status Possible by programming software.			
		in RUN status	Possible (Online change in RUN) by control commands.)* ¹ (While online change in RUN, PLC of	y programming software. (except for operation momentarily stops.).	
7	Off line CPU type		H-302* ²	H-302 or MICROEH	

*1 : Refer to the peripheral unit manual for details.

*2 : If the off-line CPU type is set as "MICROEH" in LADDER EDITOR for Windows ® before Ver.3.05, it becomes impossible to choose RAM-16H. In this case, the off-line CPU type should choose H-302.

Caution

The MICRO-EH series backup user programs in the FLASH memory.

In order to shorten the program transfer time, user program is transferred once to the operation execution memory (SRAM), and transfer operation is completed seen from programming software. Then backup copying to FLASH memory starts afterwards. Do not turn off the power to the PLC within approximately two minutes after program downloading. If the power is turned off within two minutes, a user memory error (31H) may occur. Note that the transfer completion to the FLASH memory can be confirmed by the special internal output (R7EF).

In MICRO64, this can be visually checked in OK LED. While FLASH memory is being written, OK LED blinks as follows.

3.2 I/O assignment

Unit		Assignment	64 pts type	[Reference] 28 pts type	
		Slot 0 : X48	X0-39	X0-15	
Basic	Digital	Slot 1 : Y32	Y100-123	Y100-111	
		Slot 2 : Empty	Empty16	Empty16	
	Digital	Unit 1 / Slot 0 : B1/1	X1000-1007 / 1015 (1	14 / 28 pts)	
Eve 1	Digital		Y1016-1021 / 1027 (1	14 / 28 pts)	
Exp.1	Analog	Unit 1 / Slot 0 : FUN0	WX101-104 (WX100) is used by the system.)	
	Analog	Unit 1 / Slot 0 : FUNO	WY106-107 (WY105	5 is used by the system.)	
	Digital	Unit 2 / Slot 0 : B1/1	X2000-2007 / 2015 (1	14 / 28 pts)	
Exp.2			Y2016-2021 / 2027 (1	14 / 28 pts)	
Exp.2	Analog	Unit 2 / Slot 0 : FUN0	WX201-204 (WX200 is used by the system.)		
			WY206-207 (WY205	5 is used by the system.)	
	Digital	al Unit 3 / Slot 0 : B1/1	X3000-3007 / 3015 (1	14 / 28 pts)	
Evp 2			Y3016-3021 / 3027 (1	14 / 28 pts)	
Exp.3	Analog		WX301-304 (WX300) is used by the system.)	
		Unit 3 / Slot 0 : FUN0	WY306-307 (WY305 is used by the system.)		
	Digital	Unit 4 / Slot 0 : B1/1	X4000-4007 / 4015 (1	14 / 28 pts)	
Evp 4	Digitai	Unit 4 / Slot 0 : B1/1	Y4016-4021 / 4027 (1	14 / 28 pts)	
Exp.4	Analog	Unit 4 / Slot 0 : FUN0	WX401-404 (WX400) is used by the system.)	
	Analog	01111 47 S101 0. FUNU	WY406-407 (WY405	is used by the system.)	

The I/O assignment and the I/O address of each unit are shown below.

table 3.2 I/O assignment and I/O address of each unit

3.3 Internal output, Edge, Timer

The capacity of an internal output and the number of edge, timers is shown below.

T			- 1	 .
Table 3.3	List of Internal	output,	Edge,	Imer

	Function	Sym	Size		Name	64 pts type	Ref. 28 pts type	
Function		bol				Number of points	Number of points	
	Bit	R	В	16	Bit internal output	1,984 points		
		R	В	16	Bit special internal output	64 points		
	Word	WR	W	16	Word internal output	32,768 words	4,096 words	
I/O		DR	D	16	Double word internal output			
Internal I/O		WR	W	16	Word special internal output	512 v	words	
Inte		DR	D	16	Double word special internal output			
	Sharing of	М	В	16	Bit internal output	16,384 points		
	bit / word	WM	W	16	Word internal output	1,024	words	
		DM	D	16	Double internal output			
	Edge detection	DIF	В	10	Leading edge	512 v	words	
		DFN	В	10	Trailing edge	512 v	words	
	Master control	MCS	В	10	Master control set	50 p	oints	
		MCR	В	10	Master control reset		-	
Others	Timer, Counter	TD	В	10	On delay timer	Timer + Counter	Timer + Counter	
Oť		SS	В	10	Single shot timer	Total 512 points*	Total 256 points*	
		CU	В	10	Up counter	(Timer is to 256 pts)		
		CTU	В	10	Up-down counter up input			
		CTD	В	10	Up-down counter down input			
CL		CL	В	10	Clear progress value			

* The same timer counter number cannot be used more than once.

Chapter 4 Special I/O

4.1 Introduction

Standard I/O of MICRO-EH can be used as counter input, interruption input, pulse output and a PWM output. In order to use those functions, "operation mode" must be configured at first. In addition to existing mode for the current MICRO-EH, MICRO64 has new mode of 32-bit counter.

This chapter describes this new additional mode only. (Please refer to a MICRO-EH application manual about other operation modes.)

4.2 Setting of Special I/O

The procedure to switch from standard I/O to either counter input or pulse output is shown below.

[Step 1] Setting of each parameter

- 1) Set operation mode No. to WRF070. (MICRO64 addition mode: H20 to 23)
 - \rightarrow Please refer to "4.3 Operation mode" about operation mode.
- 2) Set the function of each I/O to WRF071.
 - → Please refer to "4.4 Function setting of I/O terminal" about function of I/O terminal.
- 3) Set parameters or conditions to WRF1B0 WRF1C7.
 - → Please refer to "(1) Parameter setting" of each function about detail of condition.

[Step 2] Enable configuration

Set R7F5 to high to enable above configuration.

[Step 3] Control of special I/O

If no error is found in Step2, configuration is completed. Special I/O function is available on user program.

 \rightarrow Please refer to "(4) Errors in mode setting" of each function about detail of setting errors.

[Step 4] Save configuration parameters

If necessary, set R7F6 to high to save configuration parameters in FLASH memory. Once parameters are saved in FLASH memory, above configuration is not necessary in the next power ON time.

4.3 Operation mode

In operation modes 20 - 23, each I/O is divided into 4 groups as below, and configured per every group. Both single phase counters and 2-phase counters can be used as 32-bit counter.

X0 X1	X2 X3	X4 X5	X6 X7
Y100	Y101	Y102	Y103
Group1 Group 2		Group 3	Group 4

Figure 4.1 Overview of special I/O group

Table 4.1 Special I/O operation mode

Mode No.		Input	Output		
(WRF070)	Single-phase counter	2-phase counter	Interrupt	Pulse	PWM
20 H	4 ch	0 ch	4 ch	4 ch	4 ch
21 H	2 ch	1 ch	2 ch	3 ch	3 ch
22 H	2 ch	1 ch	2 ch	3 ch	3 ch
23 H	0 ch	2 ch	0 ch	2 ch	2 ch

* Channel number shown in above table is the maximum number. Channel number that can be used decreases by combination of I/O function.

Example) 2ch. of 2-phase counter : WRF070 → H0023

4.4 Function setting of special I/O

Each I/O function is configured in WRF071 for every group.

WRF071 is divided to 4 groups, and every 4 bits are assigned to every group.

Mode 20

Groups 1-4 choose a function from special I/O(A).

X0 X1	X2 X3	X4 X5	X6 X7
Y100	Y101	Y102	Y103
Group 1	Group 2	Group 3	Group 4

Mode 21

Groups 1 choose a function from special I/O(B). Groups 2 choose a function from special I/O(C).

Groups 3,4 choose a function from special I/O(A).

X0 X1 Y100	X2 X3 Y101	X4 X5 Y102	X6 X7 Y103	used as a 2-phase counter.
Group 1	Group 2	Group 3	Group 4	

Mode 22

Groups 1,2 choose a function from special I/O(A).

Groups 3 choose a function from special I/O(B). Groups 4 choose a function from special I/O(C).

X0 X1	X2 X3	X4 X5	X6 X7	used as a 2-phase counter.
Y100	Y101	Y102	Y103	
Group 1	Group 2	Group 3	Group 4	·

Mode 23

Groups 1,3 choose a function from special I/O(B). Groups 2,4 choose a function from special I/O(C).

X0 X1 Y100	X2 X3 Y101]	X4 X5 Y102	X6 X7 Y103	used as a 2-phase counter.
Group 1	Group 2		Group 3	Group 4	

Refer to the table (Table 4.2 to 4.4) for the setting value of special I/O(A)(B)(C). It inputs into WRF071 combining the setting value of a table. Refer to the next page for Tables 4.2-4.4.

< Note >

Even if the software of Ver.0100 sets up PWM or pulse output in the modes 20-23, it does not operate.

Setting Value	Xn	Xn+1	Ym
0 H	Standard input	Standard input	Standard output
1 H]		PWM output "n"
2 H]		Pulse output "n"
3 H		Interrupt input	Standard output
4 H]		PWM output "n"
5 H			Pulse output "n"
6 H	Counter input	Standard input	Standard output
7 H	"n"		Counter output
8 H		Pre-load input "n"	Standard output
9 H]		Counter output
AH]	Pre-strobe input "n"	Standard output
BH			Counter output
Except the above	Standard input	Standard input	Standard output

Table 4.2	2 The function which can be set up, and its setting value in n	node 20 - 22
-----------	--	--------------

n : Group No.

Table 4.3	Function and setting value of group 1,3 in mode 21 - 23

Setting Value	Xn	Xn+1	Ym
0 H	Counter xA	Starndard input	Standard output
1 H			Counter output
2 H		Pre-load input x	Standard output
3 H			Counter output
4 H		Pre-strobe input x	Standard output
5 H			Counter output
Except the above	Counter xA	Starndard input	Standard output

Table 4.4 Function and setting value of group 2,4 in mode 21 - 23

Setting Value	Xn+2	Xn+3	Ym+1
0 H	Counter xB	Counter xZ	Standard output
1 H			PWM output
2 H			Pulse output
3 H		Standard input	Standard output
4 H			PWM output
5 H			Pulse output
Except the above	Counter xB	Counter xZ	Standard output

■ Setting example 1 (Mode 20)

Group	Function			Table	Value
1	X0 : Standard input	X1 : Standard input	Y100 : Standard output	4.2	→ 0H
2	X2 : Counter input 2	X3 : Pre-load input 2	Y101 : Standard output	4.2	→ 8H
3	X4 : Counter input 3	X5 : Standard input	Y102 : Coincidence output	4.2	→ 7H
4	X6 : Standard input	X7 : Interrupt input	Y103 : Pulse output	4.2	→ 5H

WRF071 **→** 0875H

■ Setting example 1 (Mode 21)

Group	Function			Table	Value
1	X0 : Counter 1A	X1 : Pre-strobe input	Y100 : Standard output	4.3	→ 4H
2	X2 : Counter 1B	X3 : Counter input 1Z	Y101 : Standard output	4.4	→ 0H
3	X4 : Standard input	X5 : Standard input	Y102 Pulse output	4.2	→ 2H
4	X6 : Standard input	X7 : Interrupt input	Y103 PWM output	4.2	→ 4H

WRF071 **→** 4024H

High Speed Counter (HSC) 4.5

(1) Parameter setting

Setting of on-preset

If counter output is used, set counter value that counter output is turned on (the on-preset value). Possible range is from 0 to FFFFFFFH (0 to 4,294,967,295). If the on-preset value is set as same value as the off-preset value, the counter will not perform any counting operation.

On-preset value of Counter 1 :	WRF1B1 (High word)	WRF1B0 (Low word)
On-preset value of Counter 2 :	WRF1B3 (High word)	WRF1B2 (Low word)
On-preset value of Counter 3 :	WRF1B5 (High word)	WRF1B4 (Low word)
On-preset value of Counter 4 :	WRF1B7 (High word)	WRF1B6 (Low word)

Figure 4.3 Special internal outputs for setting the on-preset values

When counter is not configured, the above special internal outputs are used for other purpose.

Setting of off-preset

If counter output is used, set counter value that counter output is turned off (the off-preset value). Possible range is from 0 to FFFFFFFH (0 to 4,294,967,295). If the off-preset value is set as same value as the on-preset value, the counter will not perform any counting operation.

Off-preset value of Counter 1 :	WRF1B9 (High word)	WRF1B8 (Low word)
Off-preset value of Counter 2 :	WRF1BB (High word)	WRF1BA (Low word)
Off-preset value of Counter 3 :	WRF1BD (High word)	WRF1BC (Low word)
Off-preset value of Counter 4 :	WRF1BF (High word)	WRF1BE (Low word)
F i (() O		

Figure 4.4 Special internal outputs for setting the off-preset values

When counter is not configured, the above special internal outputs are used for other purpose.

Setting of counter pre-load

If pre-load value is used, set pre-load value. Possible range is from 0 to FFFFFFFH (0 to 4,294,967,295).

Pre-load value of Counter 1 :	WRF1C1 (High word)	WRF1C0 (Low word)
Pre-load value of Counter 2 :	WRF1C3 (High word)	WRF1C2 (Low word)
Pre-load value of Counter 3 :	WRF1C5 (High word)	WRF1C4 (Low word)
Pre-load value of Counter 4 :	WRF1C7 (High word)	WRF1C6 (Low word)
Figure 4.5 Sp	acial internal outputs for sotting	the pro load values

Figure 4.5 Special internal outputs for setting the pre-load values

When counter is not configured, the above special internal outputs are used for other purpose.

(2) Errors in mode setting

If the on-preset and off-preset values are the same, and flag (R7F5) is activated, error bit shown below will be on, and counter does not work. In addition, the setting error flag (R7F7) turns on.

Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WRF057 :	а			N	lot use	ed			b	с	d	e	f	вŊ	h	i

Figure 4.6 Special internal output for setting error indication

Bit	Description of error	Related I/O
a	(Total pulse frequency error)	Y100 to Y103
b	(Pulse 4 frequency error)	Y103
с	(Pulse 3 frequency error)	Y102
d	(Pulse 2 frequency error)	Y101
e	(Pulse 1 frequency error)	Y100
f	Counter 4 preset value error	X6
g	Counter 3 preset value error	X4
h	Counter 2 preset value error	X2
i	Counter 1 preset value error	X0

(3) Control of the counter input by the ladder program

Operation of a counter input is controllable by the ladder program with a FUN command. Moreover, each parameter can be changed.

FUN140	HSC operation control	Start / stop
FUN141	Counter output control	Enable / disable counter output
FUN142	Up / down count setting	Up counter / down counter
FUN143	Write counter value	Write current counter value
FUN144	Read counter value	Read current counter value
FUN145	Clear counter value	Clear counter value
FUN146	Change preset value	Change preset value

* Please refer to "Chapter 8 Additional commands" in the end of this book about the details of the FUN command.

(4) Notes at the time of counter input use

If the pulse of the frequency exceeding specification is inputted, a counter may incorrect-count. When MICRO64 watches a counter value periodically and a counter value changes a lot, it displays that errors occurred on special internal output WRF06A.

Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WRF06A	:	Not used									а	b	с	d		
	Fig	Figure 4.7 Special internal output For an incorrect count display in counter														
	ł	Bit		Description of abnormality							Related terminal					
		a	С	Counter 4 counting error							Х	6				
		b	С	Counter 3 counting error						X4						
		c	C	Counter 2 counting error							Х	2				
		d	С	Counter 1 counting error							Х	0				

* The above error flag is cleared by setting error clear bit (R7EC) manually or in user program.

4.6 PWM output

(1) Parameter setting

Setting of output frequency

The output frequency (Hz) of a PWM output is set up. The values which can be set up are 0-FFFFH (0-65,535).

*Please be sure to set H0000 to High-WORD.

_						
Output frequency of PWM output 1 :	WRF1B1(Not used H0000)	WRF1B0 (Output frequency)				
Output frequency of PWM output 2 :	WRF1B3(Not used H0000)	WRF1B2 (Output frequency)				
Output frequency of PWM output 3 :	WRF1B5(Not used H0000)	WRF1B4 (Output frequency)				
Output frequency of PWM output 4 :	WRF1B7(Not used H0000)	WRF1B6 (Output frequency)				
Figure 4.8	Special Internal output for an output frequency setup					
	opecial internal output for an output nequency setup					

The above-mentioned special internal output is used as a parameter of another purpose by setup of those other than a PWM output.

Setting of ON-duty

ON-duty (The rate of ON time: %) of a PWM output is set up. The values which can be set up are 0-64H (0-100). If the value more than 64H (100) is set up, it will operate by 100.

-		
ON-duty of PWM output 1 :	WRF1B9 (Not used H0000)	WRF1B8 (ON-duty)
ON-duty of PWM output 2 :	WRF1BB (Not used H0000)	WRF1BA (ON-duty)
ON-duty of PWM output 3 :	WRF1BD (Not used H0000)	WRF1BC (ON-duty)
ON-duty of PWM output 4 :	WRF1BF (Not used H0000)	WRF1BE (ON-duty)
Figure 4.9	Special Internal output for a	n ON duty setup

Figure 4.9 Special Internal output for an ON-duty setup

The above-mentioned special internal output is used as a parameter of another purpose by setup of those other than a PWM output.

(2) Errors in mode setting

PWM output does not have the abnormalities in a parameter.

When output frequency is set as 0Hz, a system sets output frequency as 10Hz.

(3) Control of the PWM output by the ladder program

Operation of a PWM output is controllable by FUN command. Moreover, each parameter can be changed.

FUN147 PWM operation control A start/stop of a PWM output are executed.

FUN148 Frequency/ON-duty changes The parameter of the specified PWM output is changed.

* The FUN command about a PWM output is not to change / addition. For details, please refer to a MICRO-EH application manual.

4.7 Pulse train output

In operation modes 20 - 23, the output pulse-number can be set up by 32 bits(1~4,294,967,295). Moreover, a maximum output frequency is 65,535Hz.

(1) Parameter setting

Setting of output frequency

Output frequency is set as the pulse output to be used. The values which can be set up are 0-FFFFH(0-65,535).

*Please be sure to set H0000 to high word in operation modes 20 - 23.

Output frequency of Pulse output 1 :	WRF1B1(Not used H0000)	WRF1B0 (Output frequency)				
Output frequency of Pulse output 2 :	WRF1B3(Not used H0000)	WRF1B2 (Output frequency)				
Output frequency of Pulse output 3 :	WRF1B5(Not used H0000)	WRF1B4 (Output frequency)				
Output frequency of Pulse output 4 :	WRF1B7(Not used H0000)	WRF1B6 (Output frequency)				
Figure 4.10 Special Internal output for an Output frequency setup						

The above-mentioned special internal output is used as a parameter of another purpose by setup of those other than a pulse train output.

Setting of Pulse output

Output pulse-number is set as the pulse output to be used. The values which can be set up are 0-FFFFFFFH(0-4,294,967,295).

Output pulse-number of Pulse output 1 :	WRF1C1 (high data)	WRF1C0 (low data)
Output pulse-number of Pulse output 2 :	WRF1C3 (high data)	WRF1C2 (low data)
Output pulse-number of Pulse output 3 :	WRF1C5 (high data)	WRF1C4 (low data)
Output pulse-number of Pulse output 4 :	WRF1C7 (high data)	WRF1C6 (low data)
F : 4.44		

Figure 4.11 Special Internal output for an Pulse output setup

The above-mentioned special internal output is used as a parameter of another purpose by setup of those other than a pulse train output.

(2) Errors in mode setting

Pulse output does not have the abnormalities in a parameter.

When output frequency is set as OHz, a system sets output frequency as 10Hz..

(3) Control of the pulse output by the ladder program

FUN151 Pulse output with acceleration/deceleration

Operation of a pulse output is controllable by FUN command. Moreover, each parameter can be changed.

- FUN149 Pulse output control Pulse output control
- FUN150 Pulse frequency setting changes Pulse frequency output setting changes

Frequency is changed by a start and stop of a pulse output.

FUN153 Pulse output with sequence parameter change The frequency of a pulse output is changed arbitrarily. * Please refer to "Chapter 8 Additional commands" in the end of this book about the details of the FUN command.

(4) Notes at the time of pulse output use

A pulse output requires load for system processing. Therefore, while outputting the pulse, command processing time

is extended 1.4 times at the maximum. (It is large effect, so that output frequency is high.)

Example) 4ch All pulse outputs are outputted by 65kHz. Scan time 20ms → 28ms

Chapter 5 Communication port

MICRO64 has one RS-232C port. This port can be used as a dedicated port or a general-purpose port. In addition, it has modem control function which communicates from a remote place through a modem.

5.1 Dedicated port

The specification of communication port is shown in table 5.1.

The communication port can be connected with the peripheral unit that supports a H-Protocol. (Portable diagram programming tool and instruction language programming tool cannot be used.) By connecting this port with a peripheral unit, created user programs can be transferred, user programs stored in the CPU can be read/verified, and the CPU operating status can be monitored. In addition, remote monitoring system can be built up by HMI ,etc.

Modem function is available in this port also. Please refer to the application manual of MICRO-EH for further information.

Item	Specification								
Transmission speed	W	hen perip	oheral units are connected	Modem mode					
_	4800 bps	s, 9600 bp	os, 19.2 kbps,	2400 bps, 4800 bps, 9600 bps, 19.2 kbps,					
	38.4 kbp	S		38.4 kbps, 57.6 kbps					
	SW1 SW3 Transmission speed setting			Set the transmission speed when connected via					
	ON	ON	38.4 kbps	modem in the special internal output (WRF01A).					
	ON	OFF	19.2 kbps						
	OFF	ON	9600 bps						
	OFF	OFF	4800 bps						
Communication system	Half dup	lex	·						
Synchronization system	Start-sto	Start-stop synchronization							
Startup system	One-side	One-sided startup using the host side command							
Transmission system	Serial transmission (bit serial transmission)								
Transmission code	ASCII								
Transmission code	Start bit (1bit)								
configuration			Parity bit (1bit)					
			Stop bit (1bit)						
	20 2	1 2^{2} 2^{3} 2^{3}	$2^4 2^5 2^6 P$						
	Data (7 bits, Even party)								
Transmission code	Sent out	from the	lowest bit in character units						
outgoing sequence									
Error control			eck, checksum, overrun check, f	raming check					
Transmission unit	U	Message unit (variable length)							
Maximum message length	503 bytes (including control characters)								
Interface			232C (maximum cable length: 1	5 m)					
Control procedure			d procedure (H-Protocol)						
			re (transmission control proced	ure 1), Simplified procedure (transmission control					
-	procedure 2)								
Connector used	CPU sid	CPU side: 8-pin modular connector (RJ-45)							

Table 5.1	Communication	port s	pecification

Note

- Portable diagram programming tool and instruction language programming tool cannot be used.
- Please note that if DIP switch 1 is set to On, +12V is output from pin 4.
- If the negative acknowledge command (NAK) is sent from the host using the transmission control procedure 1 or 2, wait at least 10 ms before sending the next text.
- Specify a value of 20 ms or higher for the response TM of the H-protocol. (When the response TM is set to 0, the default value of 20 ms will be used.)

(1) Port settings

Port can be set when the DR signal of port is off. The setting becomes valid when the DR signal is turned on.

1] Setting the DIP switches

Remove the serial port cover on the front case and set the DIP switches according to the below table.

Q
\mathbb{N}
ω
4

	Table 5.2 Setting of DIP SW							
SW No.	1	2	3	4	Setting	Remarks		
	ON	OFF	ON	OFF	38.4 kbps			
DI	ON	OFF	OFF	OFF	19.2 kbps	Default		
IPS	OFF	OFF	ON	OFF	9600 bps			
¥	OFF	OFF	OFF	OFF	4800 bps			
	OFF	ON	OFF	OFF	Connection via modem			

(do not set SW4 to ON; it is fixed to OFF.)

2] Setting the special internal output

If necessary, set the transmission control procedure and transmission speed in case of modem mode in special internal output WRF01A.

Values in this special internal output is stored in the FLASH memory by setting various setting write request (R7F6) On. Once stored in the FLASH memory, it is not necessary to make the setting again when the power supply is turned on next time.

Note

If transmission control procedure 2 is set for port 1 and the special internal output setting is stored in the FLASH memory by R7F6, port 1 starts up with transmission control procedure 2 when the power is turned on next time. Thus, note that the peripheral units that only support transmission control procedure 1 will not be connected.

Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WRF01A :	а	Not u	used			b						Not	used			
Initial value :	0			0	0	0	0	0								

Figure 5.1 Special internal output for setting port

Area	Setting Value	Content		Remarks	
а	0	Transmission control procedure 1			H0***
	1	Transmission control procedure 2			H8***
b	0	Transmission speed	4800 bps	Setting of bits 8 to 12	00000 (H*0**)
	1	when connecting via modem	9600 bps		00001 (H*1**)
	2		19.2 kbps		00010 (H*2**)
	3		38.4 kbps		00011 (H*3**)
	4		57.6 kbps		00100 (H*4**)
	5		2400 bps		00101 (H*5**)
	Other than above		4800 bps		

(2) Port hardware

The circuit diagram of port and the signal list are shown in Figure 5.2 and Table 5.3 respectively.

Figure 5.2 Circuit diagram and pin numbers for port

Table 5.3 List of port 1 signals

Pin			ction	Meaning				
No.	abbreviation	CPU	HOST	Wearing				
1]	SG1	\downarrow	\rightarrow	Ground for signals				
2]	VCC		\rightarrow	5 V DC is supplied. (Protective fuse is connected.)				
3]	DTR1(ER)		\rightarrow	Communication enabled signal When this signal is high level, communication is possible.				
4]	CD1(DCD)		\rightarrow	12V is output when DIP switch 1 is turned On.				
5]	SD1(TXD)		\rightarrow	Data sent by the CPU				
6]	RD1(RXD)		\rightarrow	Data received by the CPU				
7]	DR1(DSR)	\leftarrow		Peripheral units connected signal When this signal is high level, indicates that dedicated peripherals are connected.				
8]	RS1(RTS)	\leftarrow		Transmission request signal When this signal is high level, indicates that the CPU can receive data.				

5.2 General-purpose port

The communication port can be switched to general-purpose port by command. (General-purpose port works only in RUN status.)

General purpose port is switched by special FUN command (FUN 5) in user program. Communication on the

general-purpose port is operated by communication command (TRNS 0) in user program.

Item	Specification							
Transmission speed	pecifies by TRNS 0 / RECV 0 : 4800 bps, 9600 bps, 19.2 kbps, 38.4 kbps, 57.6 kbps							
Communication system	alf duplex							
Synchronization system	art-stop synchronization							
Transmission system	Serial transmission (bit serial transmission)							
Transmission code	Specifies by TRNS 0 / RECV 0							
configuration	Transmission data (7 or 8)							
	a 2° 2¹ 2² 2³ 2 ⁴ 2 ⁵ 2 ⁶ 2 ⁷ b c a : Start bit b : Parity bit (Even / Odd / None) c : Stop bit (1 or 2) c : Stop bit (1 or 2)							
Error control	Vertical parity check, overrun check, framing check							
Transmission format	 Start character & Receiving data length Start character & Stop character Stop character Receiving data length Specification by the format of 1] - 4] is possible. 							
Sending buffer	1,024 bytes							
Receiving buffer	1,024 bytes							

Note

In order to use a communication port as a general-purpose port (TRNS 0 / RECV 0 is performed), it is necessary to execute FUN 5 (general-purpose port change command) first.

Please refer to a MICRO-EH application manual about the details of TRNS 0 / RECV 0 / FUN 5.

Chapter 6 Special internal output

6.1 Special internal output (bit)

New added or changed special internal output (bit) for MICRO64 is shown in the following table.

* The other special internal output is the same as existing MICRO-EH.

No.	Name	Meaning	Description	Setting condition	Resetting condition
R7CA	Retentive area error	0: Normal 1: Error	When retentive area is undefined status, this bit is activated.	Set by the	Cleared by
R7CB	Processor error	0: Normal 1: Error	When micro processor is in error, this bit is activated.	system	user
R7D8	Clock error	0: Normal 1: Error	When clock IC is in error, this bit is activated.		
R7DF	Option board error	0: Supported 1: Not supported	When unsupported option board is mounted, this bit is activated.		

Table 6.1 Special internal output (Bit) list (add / change)

■Reference Special internal output (bit) list

No.	Name	No.	Name
R7C0	Ignore scan time error (normal scan)	R7E0	Key switch location (STOP)
R7C1	Ignore scan time error (periodic scan)	R7E1	Undefined
R7C2	Ignore scan time error (interrupt scan)	R7E2	Key switch location (RUN)
R7C3	Undefined	R7E3	1 scan ON after RUN
R7C4	Undefined	R7E4	Always ON
R7C5	Undefined	R7E5	0.02 second clock
R7C6	Undefined	R7E6	0.1 second clock
R7C7	Online change in RUN allowed	R7E7	1.0 second clock
R7C8	Serious error flag	R7E8	Occupied flag
R7C9	Microcomputer error	R7E9	RUN prohibited
R7CA	User memory error	R7EA	Executing a online change in RUN
R7CB	Processor error	R7EB	Power off memory
R7CC	Memory size over	R7EC	Clear error special internal output
R7CD	I/O configuration error	R7ED	Undefined
R7CE	Undefined	R7EE	Battery error display selection
R7CF	Undefined	R7EF	Backup memory writing execution flag
R7D0	Undefined	R7F0	Carry flag (CY)
R7D1	Scan time error (normal scan)	R7F1	Overflow flag (V)
R7D2	Scan time error (periodic scan)	R7F2	Shift data (SD)
R7D3	Scan time error (interrupt scan)	R7F3	Operation error (ERR)
R7D4	Grammar/assemble error	R7F4	Data error (DER)
R7D5	Blown fuse detection	R7F5	PI/O function setting flag
R7D6	Undefined	R7F6	Individual setting write request
R7D7	Undefined	R7F7	PI/O function setting error
R7D8	Clock IC error	R7F8	Calendar, clock read request
R7D9	Battery error	R7F9	Calendar, clock setting request
R7DA	Undefined	R7FA	Clock \pm 30 second adjustment request
R7DB	Self-diagnostic error	R7FB	Calendar and clock set data error
R7DC	Output selection at stop	R7FC	Output control 1
R7DD	Undefined	R7FD	Output control 2
R7DE	Undefined	R7FE	Output control 3
R7DF	Option board error	R7FF	Output control 4

6.2 Special internal output (word)

The special internal output (word) added or changed from MICRO64 is shown in the following table.

* About the special internal output of except the following table, it is the same.

				(222, 2.2.90)	A 11	
No.	Name	Meaning		Description	Setting condition	Resetting condition
WRF061	Memory board Write-protect setting	The memory board (op Setting Write-protected Write-protected cancel	Value (set by user) H8001	up write-protected. Display after setting (set by system) H0001 H0000	Set by user	Reset by user
WRF062	Memory board Status	The state of a memory 15 14 13 12 11 a b c d Not us a : 1 - Under writing to b : 1 - Write failure to c : Not used d : 1 - Read failure from * Please refer to Chapt	8 7 ed Error memory board [v a memory board [n a memory boar er 9 about an erro	0 r code write] write] d [Read] r code.	Set by the system	_
WRF06A	HSC count failure Display	a : 1 Counter No.1 b : 1 Counter No.2 c : 1 Counter No.3	8 7 Not used. incorrect count of incorrect count of incorrect count of incorrect count of	ccurred ccurred	Turned on by the system	Turned off by user
WRF06F	Phase coefficient mode	15 Phase coefficient mo 00 : Mode 1 01 : Mode 2 02 : Mode 3 03 : Mode 4	8 7 de (Ch3) Phase	0 e coefficient mode (Ch1)	Turned on by user	Turned off by user
WRF1B0 ~ WRF1B7	Output frequency, On-preset value (32bit operation mode)	Pulse output : Out	preset value (0 to out frequency (Hz used.			
WRF1B8 ~ WRF1BF	On duty, On-preset value (32bit operation mode)	Pulse output : Not	preset value (0 to used. duty (%, 0 to 100			
WRF1C0 ~ WRF1C7	Pre-load value, Pulse output value (32bit operation mode)	Pulse output : Nun	load value (0 to 4 aber of pulse (0 to used.			

 Table 6.2
 Special internal output (Word) list (add / change)

■Reference Special internal output (word) list

No.	Name
WRF000	Self-diagnosis error code
WRF001	Syntax/Assembler error details
WRF002	I/O verify mismatch details
WRF003	Undefined
~ F00A	
WRF00B	Calendar and clock present value
WRF00C	(4 digit BCD)
WRF00D	
WRF00E	
WRF00F	
WRF010	Scan time (maximum value)
WRF011	Scan time (present value)
WRF012	Scan time (minimum value)
WRF013	CPU status
WRF014	Word internal output capacity
WRF015	Operation error code
WRF016	Division remainder register (lower)
WRF017	Division remainder register (upper)
WRF018	Undefined
WRF019	Undefined
WRF01A	Communication port 1 Setting
WRF01B	Read and set values
WRF01C	for calendar and clock
WRF01D	(4 digit BCD)
WRF01E	
WRF01F	
WRF020	Undefined
~ F03B	
WRF03C	Dedicated port 1 Modem timeout time
WRF03D	Dedicated port 2 Communication settings
WRF03E	Potentiometer input 1
WRF03F	Potentiometer input 2
WRF040	Occupied member registration area 1
~ F042	
WRF043	Occupied member registration area 2
~ F045	
WRF046	Occupied member registration area 3
~ F048	
WRF049	Occupied member registration area 4
~ F04B	
WRF04C	Undefined
~ F04F	

No.	Name
WRF050	System use area
WRF051	System use area
WRF052	Undefined
WRF053	Undefined
WRF054	Power on timer
WRF055	Power on timer
WRF056	Strobe complete flag
WRF057	Detailed information of counter setting errors
WRF058	PI/O function individual setting request 1
WRF059	PI/O function individual setting request 2
WRF05A	PI/O function individual setting request 3
WRF05B	PI/O function individual setting request 4
WRF05D	Undefined
~ F060	
WRF061	Memory board write-protect setting
WRF062	Memory board status
WRF063	Undefined
~ F069	
WRF06A	HSC count failure display
WRF06B	Pulse and PWM output auto correction setting
WRF06C	Potentiometer CH1
WRF06D	Potentiometer CH2
WRF06E	Analog input type selection
WRF06F	Phase coefficient mode
WRF070	I/O operation mode
WRF071	I/O detailed function settings
WRF072	Output frequency, On-preset value
~ F075	
WRF076	On-duty value, Off-preset value
~ F079	
WRF07A	Pre-load value, Pulse output value
~ F07D	
WRF07E	Input edge
WRF07F	Input filtering time
WRF080	Undefined
~ F1AF	
WRF1B0	Output frequency, On-preset value
~ F1B7	(32bit operation mode)
WRF1B8	On-duty, On-preset value
~ F1BF	(32bit operation mode)
WRF1C0	Pre-load value, Pulse output value
~ F1CF	(32bit operation mode)

Chapter 7 Error code

The error code added by MICRO64 is shown in the following table.

Table 7.1 Additional error code details

Error Code	Error name [detection timing]	Classifi- cation	Description		OK LED	Ope- ration	Related special internal output	
Coue	[detection timing]	cation		LED		Tation	Bit	Word
2B	Processor error [when power is turned on]	Serious error	The abnormalities of the processor for I/O control were detected.			Stops	R7CB	-
5E	Option board error [Always checking]	Warning	Unsupported option board is mounted.	-	\bigcirc	Runs	R7DF	-
75	Memory board error [when power is turned on]	Warning	Data failure in memory board.	-	\bigcirc	Runs	-	WRF062
76	Power failure memory area error [when power is turned on]	Warning	The area specified to be power failure memory is unfixed by the low battery.	-	•	Runs	R7CA	-

 \bigcirc : ON \bullet : OFF \bullet : Flashing (1 s ON, 1 s OFF) \bullet : Flashing (500 ms ON, 500 ms OFF)

● : Flashing (250 ms ON, 250 ms OFF)

- : Depends on the CPU's operating state. The RUN LED is lit while the CPU is in operation; the RUN LED is unlit while the CPU is not in operation.

Error code list

Table 7.2 Error code list (1/2)

ErrorError name [detection timing]Classifi cationDescription11System ROM error [when power is turned on]Fatal errorThe system ROM has a checksum error or cannot be read Error in built-in ROM/FLASH)12System RAM error [alwaps checking]Fatal errorThe system RAM cannot be read and/or written properly in the micro computer13Micro computer error [always checking]Fatal errorAddress error interrupt, undefined instruction interrupt occurred in the micro computer17Micro computer error [always checking]Fatal errorSystem program in FLASH memory has a checksum error error23Undefined instruction (when starting RUN]Serious errorError is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction)27Data memory error [when power ON, when initializing CPU] errorSerious errorA checksum error is detected in user memory.31User memory size error [when RUN starts]Serious errorA checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorThere is a grammatical error in the user program.44Ivo information verification error [always checking]Minor errorLos error match44Overload error (periodical scan) [gring END processing]Minor errorExecution time for normal scan exceeded the execution period.45Overload error (interrupt grocessing]Minor errorExecution time for periodical scan exceed					
11System ROM error [when power is turned on]Fatal errorThe system ROM has a checksum error or cannot be read Error in built-in ROM/FLASH)12System RAM error [when power is turned on]Fatal errorThe system RAM cannot be read and/or written properly13Micro computer error [always checking]Fatal errorAddress error interrupt, undefined instruction interrupt occurred in the micro computer13Micro computer error [always checking]Fatal errorAddress error interrupt, undefined instruction interrupt occurred in the micro computer23Undefined instruction (when starting RUN)Serious errorError is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction)27Data memory error (when power ON, when initializing CPU] errorSerious errorData memory cannot be read/written properly.31[when power is turned on, when RUN starts, during RUN]Serious errorA checksum error is detected in user memory.33User memory size error (when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.34[when RUN starts, when changing during RUN]errorI/O assignment information and actual loading of module do not match41L/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match41L/O information verification error [alwing END processing]Minor errorExecution time for periodical scan exceeded the execut				Description	
11[when power is turned on]errorError in built-in ROM/FLASH)12[When power is turned on]FatalThe system RAM cannot be read and/or written properly13Micro computer error [always checking]FatalAddress error interrupt, undefined instruction interrupt occurred in the micro computer17System program error [always checking]FatalAddress error interrupt, undefined instruction interrupt occurred in the micro computer18System program error [always checking]FatalSystem program in FLASH memory has a checksum error program instruction that cannot be decoded (undefined instruction)23[when starting RUN]errorError is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction)27Data memory error [when power orv, when initializing CPU] [when power orv grorSerious errorA checksum error is detected in user memory.31[when power orv gror starts, during RUN]Serious errorA checksum error is detected in user memory.33[when RUN starts]errorSerious error34[when RUN starts, when changing during RUN]errorI/O assignment information and actual loading of module do not match41[/O information verification error [during END processing]Minor errorLoceution time for periodical scan exceeded the execution period.45Overload error (periodical scan) [periodical processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46 <td>Code</td> <td></td> <td></td> <td></td>	Code				
InterpretationErrorErrorErrorErrorErrorErrorErrorErrorErrorErrorErrorErrorErrorErrorInte system RAM cannot be read and/or written properly13Micro computer error [always checking]Fatal errorAddress error interrupt, undefined instruction interrupt occurred in the micro computer17Micro computer error [always checking]Fatal errorAddress error interrupt, undefined instruction interrupt occurred in the micro computer23Undefined instruction (when starting RUN)Serious errorError is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction)27Data memory error (when power or, when initializing CPU)Serious errorData memory cannot be read/written properly.31[when power ors is turned on, when RUN starts, during RUN]Serious errorA checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 (HWen RUN starts, when changing during RUN]41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44(normal scan) (periodical scan) [periodical scan]Minor errorExecution time for periodical scan exceeded the execution period.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution 	11	•	Fatal	The system ROM has a checksum error or cannot be read	
12[when power is turned on]error13Micro computer error [always checking]Fatal errorAddress error interrupt, undefined instruction interrupt occurred in the micro computer1FSystem program error [always checking]Fatal errorSystem program in FLASH memory has a checksum error23Undefined instruction [when starting RUN]Serious errorError is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction)27Data memory error [when power ON, when initializing CPU]Serious errorData memory cannot be read/written properly. error31User memory error [when power on, when RUN]Serious errorA checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorA checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorHEX.34[Voin formation verification error [always checking]Serious errorHEX.41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44Overload error (periodical scan) [periodical processing]Minor errorExecution time for normal scan exceeded the execution period.45Overload error (periodical processing]Minor errorAn interrupt of the same cause occurred during interrupt scan46(interrupt scan) [furing interrupt processing]Minor errorAn inter	11	[when power is turned on]	error	/	
[when power is turned on]error13Micro computer error [always checking]Fatal errorAddress error interrupt, undefined instruction interrupt occurred in the micro computer1FSystem program error [always checking]Fatal errorSystem program in FLASH memory has a checksum error program instruction that cannot be decoded (undefined instruction)23Undefined instruction [when starting RUN]Serious errorError is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction)27Data memory error [when power on, when initializing CPU] (when power is turned on, when RUN starts, during RUN]Serious errorData memory cannot be read/written properly. error31[when RUN starts]errorMicro error33User memory size error [when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.41[/O information verification error [always checking]Minor errorIf a grammatical error in the user program.44Overload error (normal scan) (periodical scan) (periodical processing]Minor errorExecution time for normal scan exceeded the execution period.45Overload error (periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46(interrupt scan) (periodical processing]errorMinor error47Sakup memory error (buring interrupt processing]Minor error48Overload error (interrupt sca	12	System RAM error	Fatal	The system RAM cannot be read and/or written properly	
13 [always checking] error in the micro computer 1F System program error Fatal System program in FLASH memory has a checksum error 23 [when starting RUN] error Error is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction) 23 [when power ON, when initializing CPU] Serious Error is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction) 27 [when power ON, when initializing CPU] Serious A checksum error is detected in user memory. 31 [when power is turned on, when RUN starts, during RUN] error A checksum error is detected in user memory. 33 User memory size error Serious error HEX. 33 [when RUN starts] error Error is a grammatical error in the user program. 41 I/O information verification error Minor Execution time for normal scan exceeded the overload check time set by the parameter. 44 (normal scan) error Execution time for periodical scan exceeded the execution period. 45 Overload error Minor Execution time for periodical scan exceeded the execution period. 46 (interrupt sca	12	[when power is turned on]	error		
Idways checking]errorin the micro computer1FSystem program error [always checking]Fatal errorSystem program in FLASH memory has a checksum error error23Undefined instruction [when starting RUN]Serious errorError is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction)27Data memory error [when power ON, when initializing CPU]Serious errorData memory cannot be read/written properly. error31User memory error [when power is turned on, when RUN starts, during RUN]Serious errorA checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorVer program capacity set by the parameter is other than 280 HEX.34[when RUN starts]errorThere is a grammatical error in the user program.41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44Overload error (normal scan) [periodical processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.46Overload error (periodical processing]Minor errorAn interrupt of the same cause occurred during interrupt scan (error46[Minor gi interrupt processing]An interrupt of the same cause occurred during interrupt scan47Backup memory error [during interrupt processing]Minor error48[Minor gi interrupt processing]An interrupt of the	12		Fatal	Address error interrupt, undefined instruction interrupt occurred	
1P[always checking]error23Undefined instruction [when starting RUN]Serious errorError is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction)27Data memory error [when power ON, when initializing CPU]Serious errorData memory cannot be read/written properly.31[when power on, when initializing CPU]Serious errorA checksum error is detected in user memory.31[when power is turned on, when RUN starts, during RUN]Serious errorA checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.34[when RUN starts]error errorThere is a grammatical error in the user program.341I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match41I/O overload error (normal scan) [periodical processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46[dvien grinetrupt processing]minor errorAn interrupt of the same cause occurred during interrupt scan46[dvien grinetrupt processing]Backup memory error [during interrupt processing]Marning57[when program writing is executed, whenWarning	15	[always checking]	error	in the micro computer	
Ialways checkingerror23Undefined instruction [when starting RUN]Serious errorFerror is detected when an attempt is made to execute a user program instruction that cannot be decoded (undefined instruction)27Data memory error [when power ON, when initializing CPU] errorSerious errorData memory cannot be read/written properly.31User memory error [when power is turned on, when RUN starts, during RUN]Serious errorA checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.34[when RUN starts]error errorThere is a grammatical error in the user program.34[Woh RUN starts]error error41I/O information verification error [always checking]Minor errorL/O assignment information and actual loading of module do not match44Overload error (periodical processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46[Men rupt program writing is executed, whenMarningData cannot be written to the backup memory.	11	System program error	Fatal	System program in FLASH memory has a checksum error	
23[when starting RUN]error errorprogram instruction that cannot be decoded (undefined instruction)27Data memory error [when power ON, when initializing CPU]Serious errorData memory cannot be read/written properly. error31User memory error [when power is turned on, when RUN] starts, during RUN]Serious errorA checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 error34[when RUN starts]Serious errorThere is a grammatical error in the user program.34[Won RUN starts, when changing during RUN]Minor error41I/O information verification error [always checking]Minor error41[Voerload error (periodical scan) [periodical processing]Minor error45Overload error (periodical processing]Minor error46Overload error (interrupt scan) [during interrupt processing]Minor error5F[when program writing is executed, whenWarning	11	[always checking]	error		
27Data memory error [when power ON, when initializing CPU]Serious errorData memory cannot be read/written properly.31User memory error (when power is turned on, when RUN) starts, during RUN]A checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorA checksum error is detected in user memory.33User memory size error [when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.34Grammar/assemble error [kwhen RUN starts, when changing during RUN]Serious errorThere is a grammatical error in the user program.41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44Overload error (periodical scan) [periodical processing]Minor errorExecution time for normal scan exceeded the execution period.45Overload error (periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarningData cannot be written to the backup memory.		Undefined instruction	Serious	Error is detected when an attempt is made to execute a user	
27Data memory error (when power ON, when initializing CPU)Serious errorData memory cannot be read/written properly.31User memory error (when power is turned on, when RUN starts, during RUN)Serious errorA checksum error is detected in user memory.33User memory size error (when RUN starts)Serious errorUser program capacity set by the parameter is other than 280 HEX.34Grammar/assemble error (when RUN starts, when changing during RUN)Serious errorUser program capacity set by the parameter is other than 280 HEX.41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44Overload error (periodical scan) [periodical processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.46Overload error (interrupt scan) [during interrupt scan]Minor errorExecution time for periodical scan exceeded the execution period.46Firefordical processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarningData cannot be written to the backup memory.	23	[when starting RUN]	error	program instruction that cannot be decoded	
21[when power ON, when initializing CPU]error31User memory error starts, during RUN]Serious errorA checksum error is detected in user memory.33User memory size error (when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.33User memory size error (when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.34Grammar/assemble error (when RUN starts, when changing during RUN]Serious errorThere is a grammatical error in the user program.41I/O information verification error (always checking)Minor errorI/O assignment information and actual loading of module do not match44(normal scan) (during END processing)errorMinor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning WarningData cannot be written to the backup memory.				(undefined instruction)	
21[when power ON, when initializing CPU]error31User memory error starts, during RUN]Serious errorA checksum error is detected in user memory.33User memory size error (when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.33User memory size error (when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.34Grammar/assemble error (when RUN starts, when changing during RUN]Serious errorThere is a grammatical error in the user program.41I/O information verification error (always checking)Minor errorI/O assignment information and actual loading of module do not match44(normal scan) (during END processing)errorMinor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning WarningData cannot be written to the backup memory.	27	Data memory error	Serious	Data memory cannot be read/written properly.	
31[when power is turned on, when RUN starts, during RUN]error33User memory size error [when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.34Grammar/assemble error [when RUN starts, when changing during RUN]Serious errorThere is a grammatical error in the user program.41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44Overload error (normal scan) [during END processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46[interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning warningData cannot be written to the backup memory.	27	[when power ON, when initializing CPU]	error		
starts, during RUN]user33User memory size error [when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.34Grammar/assemble error [when RUN starts, when changing during RUN]Serious errorThere is a grammatical error in the user program.41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44Overload error (normal scan) [during END processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error5FBackup memory error [when program writing is executed, whenWarning other and the scan of the s		User memory error	Serious	A checksum error is detected in user memory.	
33User memory size error [when RUN starts]Serious errorUser program capacity set by the parameter is other than 280 HEX.34Grammar/assemble error [when RUN starts, when changing during RUN]Serious errorThere is a grammatical error in the user program.41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44Overload error (normal scan) [during END processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarningData cannot be written to the backup memory.	31	[when power is turned on, when RUN	error		
33[when RUN starts]errorHEX.34Grammar/assemble error [when RUN starts, when changing during RUN]Serious errorThere is a grammatical error in the user program.41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44Overload error (normal scan) [during END processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarningData cannot be written to the backup memory.		starts, during RUN]			
[when RUN starts]errorHEX.34Grammar/assemble error [when RUN starts, when changing during RUN]Serious errorThere is a grammatical error in the user program.41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match41Voerload error (normal scan) [during END processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error47Backup memory error [when program writing is executed, whenWarningData cannot be written to the backup memory.	22	User memory size error	Serious	User program capacity set by the parameter is other than 280	
34[when RUN starts, when changing during RUN]errorImage: Constraint of the same cause occurred during interrupt scan41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match41Voerload error (normal scan)Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.44(normal scan) [during END processing]Minor errorExecution time for periodical scan exceeded the execution period.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning errorData cannot be written to the backup memory.	55	[when RUN starts]	error	HEX.	
RUN]Image: Neglect of the same cause occurred during interrupt scan41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match44Overload error (normal scan) [during END processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning errorData cannot be written to the backup memory.		Grammar/assemble error	Serious	There is a grammatical error in the user program.	
41I/O information verification error [always checking]Minor errorI/O assignment information and actual loading of module do not match41Overload error (normal scan) [during END processing]Minor errorExecution time for normal scan exceeded the overload check time set by the parameter.44Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning warningData cannot be written to the backup memory.	34	[when RUN starts, when changing during	error		
41[always checking]errormatch0Overload errorMinorExecution time for normal scan exceeded the overload check time set by the parameter.44(normal scan)errortime set by the parameter.[during END processing]MinorExecution time for periodical scan exceeded the execution period.45(periodical scan)errorExecution time for periodical scan exceeded the execution period.46Overload errorMinor (interrupt scan)An interrupt of the same cause occurred during interrupt scan error46Backup memory error [during interrupt processing]Warning VarningData cannot be written to the backup memory.		RUN]			
[always checking]errormatch44Overload errorMinorExecution time for normal scan exceeded the overload check time set by the parameter.44(normal scan)errortime set by the parameter.[during END processing]errorExecution time for periodical scan exceeded the execution period.45Overload errorMinor (periodical processing]Execution time for periodical scan exceeded the execution period.46Overload errorMinor (interrupt scan) [during interrupt processing]An interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning errorData cannot be written to the backup memory.	41	I/O information verification error	Minor	I/O assignment information and actual loading of module do not	
44(normal scan) [during END processing]errortime set by the parameter.45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning errorData cannot be written to the backup memory.	41	[always checking]	error	match	
[during END processing]Image: Constraint of the same cause occurred during interrupt scan45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning errorData cannot be written to the backup memory.		Overload error	Minor	Execution time for normal scan exceeded the overload check	
45Overload error (periodical scan) [periodical processing]Minor errorExecution time for periodical scan exceeded the execution period.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Backup memory error [when program writing is executed, whenWarning errorData cannot be written to the backup memory.	44	(normal scan)	error	time set by the parameter.	
45(periodical scan) [periodical processing]errorperiod.46Overload error (interrupt scan) [during interrupt processing]Minor errorAn interrupt of the same cause occurred during interrupt scan error46Sackup memory error [when program writing is executed, whenWarning errorData cannot be written to the backup memory.		[during END processing]			
[periodical processing] Image: Processing intervent of the same cause occurred during interrupt scan intervent of the same cause occurred during intervent scan intervent intervent of the same cause occurred during intervent scan intervent i		Overload error	Minor	Execution time for periodical scan exceeded the execution	
46 Overload error (interrupt scan) Minor error An interrupt of the same cause occurred during interrupt scan 46 [during interrupt processing] error Backup memory error Warning Data cannot be written to the backup memory. 5F [when program writing is executed, when Variang	45	(periodical scan)	error	period.	
46 (interrupt scan) error [during interrupt processing] error Backup memory error Warning 5F [when program writing is executed, when		[periodical processing]			
[during interrupt processing]WarningBackup memory errorWarning5F[when program writing is executed, when		Overload error	Minor	An interrupt of the same cause occurred during interrupt scan	
Backup memory errorWarningData cannot be written to the backup memory.5F[when program writing is executed, when	46	(interrupt scan)	error		
Backup memory errorWarningData cannot be written to the backup memory.5F[when program writing is executed, when		[during interrupt processing]			
5F [when program writing is executed, when			Warning	Data cannot be written to the backup memory.	
	5F		Ũ		
		PI/O function setting is requested]			

		Table 7.5 EII	or code list (2/2)
Error	Error name	Classifi-	Description
Code	[detection timing]	cation	
	Port 1 transmission error	Warning	A parity error was detected during transmission.
61	(parity)		
	[when transmitting]		
	Port 1 transmission error	Warning	A framing error or overrun error was detected during
62	(framing/overrun)		transmission.
	[when transmitting]		
	Port 1 transmission error	Warning	A time out error was detected during transmission.
63	(time out)		
	[when transmitting]		
	Port 1 transmission error	Warning	A protocol (transmission procedure) error was detected during
64	(protocol error)		transmission.
	[when transmitting]		
	Port 1 transmission error	Warning	A checksum error was detected during transmission.
65	(BCC error)		
	[when transmitting]		
	Port 2 transmission error	Warning	A parity error was detected during transmission.
67	(parity)		
	[when transmitting]		
	Port 2 transmission error	Warning	A framing error or overrun error was detected during
68	(framing/overrun)		transmission.
	[when transmitting]		
	Port 2 transmission error	Warning	A time out error was detected during transmission.
69	(time out)		
	[when transmitting]		
	Port 2 transmission error	Warning	A protocol (transmission procedure) error was detected during
6A	(protocol error)		transmission.
	[when transmitting]		
	Port 2 transmission error	Warning	A checksum error was detected during transmission.
6B	(BCC error)		
	[when transmitting]		
	Battery error	Warning	• Battery voltage dropped below the specified value
71	(data memory)		Battery not installed
	[always checking]		
	Port 1	Warning	There is no response with the AT command.
94	No modem response		
	[when modem is connected]		

Table 7.3 Error code list (2/2)

Chapter 8 Additional commands

One application command and 53 FUN commands have been added to MICRO64. In addition, since the counter input and number of output pulse is extended to 32-bit, the counter input control and pulse output control command is applied to 32-bit.

This chapter describes the specification of a command added / changed.

8.1 Additional command list

(1) Application command

_	Table 8.1 Additional command list (Application command)					
	No. Ladder symbol Command name			Process descriptions		
	1	ADRIO(d, s)	I/O address conversion	Stores the actual address of the I/O designated by s in d.		

(2) FUN command

Table 8.2 Additional command list (FUN command) 1/2

No.	Ladder syr	nbol	Command name	Process descriptions
1	FUN 0(s)	[PIDIT(s)]	PID operation initialization	Initializes the area for PID operation.
2	FUN 1(s)	[PIDOP(s)]	PID operation execution control	Performs control for PID operation execution.
3	FUN 2(s)	[PIDCL(s)]	PID operation calculation	Executes PID operation.
4	FUN 4 (s)	[IFR (s)]	Process stepping	Performs the process stepping processing.
5	FUN 10 (s)	[SIN (s)]	SIN function	Calculates the SIN of the value designated by s and stores the result in s+1, s+2.
6	FUN 11 (s)	[COS (s)]	COS function	Calculates the COS of the value designated by s and stores the result in s+1, s+2.
7	FUN 12 (s)	[TAN (s)]	TAN function	Calculates the TAN of the value designated by s and stores the result in s+1, s+2.
8	FUN 13 (s)	[ASIN (s)]	ARC SIN function	Calculates the ARC SIN of the value designated by s (fractional portion) and s+1 (integer portion), and stores the result in s+2.
9	FUN 14 (s)	[ACOS (s)]	ARC COS function	Calculates the ARC COS of the value designated by s (fractional portion) and s+1 (integer portion), and stores the results in s+2.
10	FUN 15 (s)	[ATAN (s)]	ARC TAN function	Calculates the ARC TAN of the value designated by s (fractional portion) and s+1 (integer portion), and stores the results in s+2.
11	FUN22 (s)		Check code calculation	Check code for sending serial communication message is calculated and created.
12	FUN23 (s)		Check code verifying	Check code for receiving serial communication message is verified.
13	FUN 30 (s)	[BINDA (s)]	BIN \rightarrow ASCII conversion (16 bits)	Converts 16-bit unsigned binary data to a decimal ASCII code, then stores it.
14	FUN 31 (s)	[DBINDA (s)]	BIN \rightarrow ASCII conversion (32 bits)	Converts 32-bit unsigned binary data to a decimal ASCII code, then stores it.
15	FUN 32 (s)	[BINHA (s)]	BIN \rightarrow ASCII conversion (16 bits)	Converts 16-bit unsigned binary data to an ASCII code, then stores it.
16	FUN 33 (s)	[DBINHA (s)]	BIN \rightarrow ASCII conversion (32 bits)	Converts 32-bit unsigned binary data to an ASCII code, then stores it.
17	FUN 34 (s)	[BCDDA (s)]	BIN \rightarrow ASCII conversion (16 bits)	Converts 16-bit BCD (BCD 4-digit) data to an ASCII code, then stores it.
18	FUN 35 (s)	[DBCDDA (s)]	BIN \rightarrow ASCII conversion (32 bits)	Converts 32-bit BCD (BCD 8-digit) data to an ASCII code, then stores it.
19	FUN 36 (s)	[DABIN (s)]	ASCII \rightarrow BIN conversion (16 bits)	Converts unsigned BCD 5-digit data to an ASCII code, then stores it.
20	FUN 37 (s)	[DDABIN (s)]	ASCII \rightarrow BIN conversion (32 bits)	Converts signed BCD 10-digit data to an ASCII code, then stores it.
21	FUN 38 (s)	[HABIN (s)]	ASCII \rightarrow BIN conversion (16 bits)	Converts a 4-digit hexadecimal ASCII code to 16-bit binary data, then stores it.
22	FUN 39 (s)	[DHABIN (s)]	ASCII \rightarrow BIN conversion (32 bits)	Converts a 8-digit hexadecimal ASCII code to 32-bit binary data, then stores it.
23	FUN 40 (s)	[DABCD (s)]	ASCII \rightarrow BIN conversion (16 bits)	Converts a 4-digit ASCII code to 4-digit BCD data, then stores it.
24	FUN 41 (s)	[DDABCD (s)]	ASCII \rightarrow BIN conversion (32 bits)	Converts a 8-digit ASCII code to 8-digit BCD data, then stores it.
25	FUN 42 (s)	[ASC (s)]		Converts binary data to an ASCII code of the designated number of characters, then stores it.
26	FUN 43 (s)	[HEX (s)]	ASCII \rightarrow BIN conversion (designated)	Converts an ASCII code of the designated number of characters to binary data, then stores it.
27	FUN 44 (s)	[SADD (s)]	Merge character strings	Merges the designated character stings (up to NULL), then stores it in the I/O at the designated position.
28	FUN 45 (s)	[SCMP (s)]	Compare character strings	Compares the designated character stings (up to NULL), then stores the comparison result.
29	FUN 46 (s)	[WTOB (s)]	Word \rightarrow byte conversion	Divides 16-bit word data, converts it to 8-bit byte data, then stores it.
30	FUN 47 (s)	[BTOW (s)]	Byte \rightarrow word conversion	Divides 8-bit byte data, merges it into 16-bit word data, then stores it.
31	FUN 48 (s)	[BSHR (s)]	Right-shift byte unit	Shifts the designated data string to the right for the number of the designated bytes (8 bits*n).
32	FUN 49 (s)	[BSHL (s)]	Left-shift byte unit	Shifts the designated data string to the left for the number of the designated bytes (8 bits*n).

No.	Ladder symbol	Command name	Process descriptions
33	FUN 100(s) [INTW(s)]	Floating point operation (Real number to integer)	Real number to integer (Word) conversion.
34	FUN 101(s) [INTD(s)]	Floating point operation (Real number to integer)	Real number to integer (Double word) conversion.
35	FUN 102(s) [FLOAT(s)]	Floating point operation (Integer to real number)	Integer (word) to real number conversion.
36	FUN 103(s) [FLOATD(s)]	Floating point operation (Integer to real number)	Integer (Double word) to real number conversion.
37	FUN 104(s) [FADD(s)]	Floating point operation (Addition)	The addition of the real number.
38	FUN 105(s) [FSUB(s)]	Floating point operation (Subtraction)	The subtraction of the real number.
39	FUN 106(s) [FMUL(s)]	Floating point operation (Multiplication)	The multiplication of the real number.
40	FUN 107(s) [FDIV(s)]	Floating point operation (Division)	The division of the real number.
41	FUN 108(s) [FRAD(s)]	Floating point operation (Radian conversion)	Angle to radian conversion.
42	FUN 109(s) [FDEG(s)]	Floating point operation (Angle conversion)	Radian to angle conversion.
43	FUN 110(s) [FSIN(s)]	Floating point operation (SIN)	Calculates the SIN of the floating point number.
44	FUN 111(s) [FCOS(s)]	Floating point operation (COS)	Calculates the COS of the floating point number.
45	FUN 112(s) [FTAN(s)]	Floating point operation (TAN)	Calculates the TAN of the floating point number.
46	FUN 113(s) [FASIN(s)]	Floating point operation (ARC SIN)	Calculates the ARC SIN of the floating point number.
47	FUN 114(s) [FACOS(s)]	Floating point operation (ARC COS)	Calculates the ARC COS of the floating point number.
48	FUN 115(s) [FATAN(s)]	Floating point operation (ARC TAN)	Calculates the ARC TAN of the floating point number.
49	FUN 116(s) [FSQR(s)]	Floating point operation (Square root)	Calculates the square root of the floating point number.
50	FUN 117(s) [FEXP(s)]	Floating point operation (Exponent)	Calculates the exponent of the floating point number.
51	FUN 118(s) [FLOG(s)]	Floating point operation (Logarithm)	Calculates the logarithm of the floating point number.
52	FUN 119(s)	Floating point operation (Common logarithm)	Calculates the common logarithm of the floating point number.
53	FUN 153(s)	Pulse output with sequence parameter change	Pulse output according to the parameter beforehand registered into the table.

Table 8.3 Additional command list (FUN command) 2/2

: Supported by software ver. 1.01 or later

8.2 Changed command list

Table 8.4 Changed command list

No.	Ladder symbol	Command name	Process descriptions
1	FUN 143 (s)	HSC Counter value rewrite	The count value of the specified counter is rewritten.
2	FUN 144 (s)	HSC Counter value re	The present value of the specified counter is read.
3	FUN 146 (s)	HSC Preset value change	The preset value of the specified counter is changed.
4	IFUN 150 (s)	Pulse frequency output setting changes	The frequency / number of output pulse of the specified counter is changed.
5	IEUN 151 (S)	Pulse output with acceleration / deceleration	A pulse is outputted increasing / decreasing frequency.

: Changed by software ver. 1.01 or later

8.3 Command specifications

Please refer to the command specification from the following page about the details of a command added or changed.

N	lame	I/O address conv	version													
	L	adder format				Cor	ndition c	code			Proc	essin	g time	e (μs)	Remark	
				F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	М	ax		
	A	ADRIO (d, s)			DER	ERR	SD	V	'	С						
				\perp	•	•	•	•	• •		-				Upper case: B	
	Command format				Number of s			steps			26	5.5	•	<u>,</u>	Lower case: W	
	ADRIO (d, s)				Conditior	۱		Step	S							
	ADRIO (u, s)				_				3							
ĺ					Bit			W	'ord		Doι	uble v	vord	ant		
	Usable I/O X			Y	R,	TD, SS,	WX	WY			DX	DY	DR,	Constant	Other	
	<u>г. </u>		<u> </u>		М	CU, CT			WM	┥──			DM	0		
d		sion address		\vdash	\vdash			0	0	_						
S		be converted	0	0	0	<u> </u>	0	0	0							
	Funct	ion														
0	btains th	e actual address of	f the I/	O des	ignate	d by s, and	d sets the	e resu	lt in d		_		_	_		
Pro	ogram e	example														
	X20	DIF0														
	⊢┨┠──	4		ADR	IO (WF	R100, WR0)		H		LD AND	X200 DIF0					
I								-		[ADRI(O (WR I	00, WF	R0)			
]						
<u> </u>																
Pro	gram de	escription														
		020 rise, the actua)0) is set	in W	R0100).						
A	After command execution, WR0100 becomes H3C00.															

Name	PID Initialization													
La	adder format			Condition code						Proc	essin	g time	(µS)	Remark
	FUN 0 (s)		F	R7F4	R7F3	R7F2	R7I	=1 R	7F0	A١	Ave Ma		ax	
	[PIDIT (s)]		I	DER	ERR	SD	V		С					
				•	•	•	•		•					
Command format				Number of steps					4,115		6,502			
	FUN 0 (s)			(Conditior	1		Steps	;					
*	[PIDIT (s)]				_			3						
				Bit			Word			Dou	ıble v	vord	Int	
Usable I/O X		Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other	
			М	CU, CT			WM				DM	ŏ		
s PID control table								0						WR only

Function

• The FUN 0 (s) initializes the area in which the initialization set data required for PID operation is stored.

• The (s) in the FUN 0 (s) is used to specify the head number of WR of the PID management table.

• If there is an error in the contents specified in the PID control table, an error code will be set in error code 0 of the PID control table and initialization will not be performed.

• Once initialization is successfully completed (FUN 0 normal completion ("1") in the PID management table), re-executing the FUN 0 will generate an error.

Cautionary notes

If difficulty arises when the area used by the PID operation is cleared upon operation start or recovering from a power failure, please specify the power failure memory.

* [] indicates the display when the LADDER EDITOR is used.

Na	ame	PID operation con	ntrol												
	L	adder format			Condition code						Proc	essin	g time	(µs)	Remark
		FUN 1 (s)		F	R7F4 R7F3 R7F2 R7F1 R7F0		A١	/e.	Max.						
		[PIDOP (s)]		I	DER	ERR	SD	V	/	С					
					•	•	•	•	•	•					
	Command format				Number of steps						118		195		
		FUN 1 (s)			(Conditior	า	Steps							
	*	[PIDOP (s)]				—			3						
					Bit			Word			Double v		vord	ant	
	Usable I/O X		Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other	
				М	CU, CT			WM				DM	ŭ		
s PID control table							0						WR only		

Function

• The FUN 1 (s) determines the loop in which the operation is performed after reading the PID Execution flag from the bit table area of the loop and the PID Constant Change flag.

• Set (s) in the FUN 1 (s) as the head number of the PID control table. If set differently, an error will be generated and an error code will be set to error codes 0 and 1 of the PID control table, resulting in the FUN 1 not being executed.

• Program the FUN 1 (s) so that it is executed once during the 20 ms periodic scanning.

Name	е	PID ca	lculation p	rocess	3											
	La	dder fo	ormat				Cor	ndition c	ode			Proc	essin	g time	(μs)	Remark
	I	FUN 2	(s)		1	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A۱	Ave. Ma:		ax.	
	* [PIDCL (s)]					DER	ERR	SD	V	,	С					
					•	•	•	•		•	-					
	Command format					Number of steps					14	47	÷			
		FUN 2				Condition			Steps							
	*	[PIDCI	L (s)]			—			3							
						Bit			W	ord		Dou	uble v	/ord t		
Usable I/O X				Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other	
			М	CU, CT			WM				DM	ŭ				
s Wo	s Word table									0						WR only
Fur	nction	1														

• The sampling time set in the word table for each loop determines whether or not PID calculation is performed.

• The FUN 2 (s) turns ON the PID Calculation In Progress flag of the loop that is being calculated.

• The FUN 2 (s) will check for the output upper limit and low limit values, set value bit pattern, and range of the output value bit pattern for each loop. If an error is generated, the FUN 2 Error flag of the loop bit table will turn ON and an error code is set to error code 2 of the PID control table. The FUN 2 will be executed even if an error is generated.

Cautionary notes

• Set all of the head number of WR of the word table for each PID loop of the FUN 2 (s).

• Program the FUN 2 (s) so that it is executed during the 20 ms periodic scanning.

(1) PID control table (In the case of FUN 0 (WRxxxx))

(a) Structure of PID management table (1)

Sets the header number of the WR used as the PID control table in s of FUN 0 (s). The PID control table is comprised of 2], 3], 4] and 5], and the size of the table increases by the number of loops 3]. Make sure that the maximum number of the WR is not exceeded. Otherwise, error code H0004 will be written in error code 0 2].

Address									
XXXX	Error code 0 *1 (Read)	 Sets the error code generated by FUN 0 processing or some part of FUN 1 processing. If no error is present, the prior status is maintained. 	2]						
$\mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x} + 1$	Error code 1 *1 (Read)	Sets the error code generated by FUN 1 processing.If no error is present, the prior status is maintained.							
xxxx + 2	Error code 2 *1 (Read)	Sets the error code generated by FUN 2 processing.If no error is present, the prior status is maintained.							
xxxx + 3	FUN 0 Normal completion 1 (Read)	 Sets H0001 when FUN 0 (PID initialization) is executed normally. If an error is generated, the value will be H0000, and an error code will be set in error code 0. 	5]						
xxxx + 4	Number of loops (Write) *2	 Sets the number of loops used in a range between 1 and 64. If the value is 0, H0002 is written in error code 0, and the PID will not be processed. (Even if the FUN 1 and FUN 2 are programmed, PID will not be processed.) 	3]						
xxxx + 5	Head address of the WR of the word table for loop 1 (Write) *2	 48 words are used per loop for PID constant input and for PID internal calculations. If the maximum WR number is exceeded, error code XX05 will be written in error code 0. 	4]						
xxxx + 6	Head address of the WR of the word table for loop 2 (Write) *2	 48 words are used per loop for PID constant input and for PID internal calculations. If the maximum WR number is exceeded, error code XX05 will be written in error code 0. 							
xxxx + 7	Head address of the WR of the word table for loop 3 (Write) *2	 48 words are used per loop for PID constant input and for PID internal calculations. If the maximum WR number is exceeded, error code XX05 will be written in error code 0. 							
• • •	•••	•••							
xxxx + 44	Head address of the WR of the word table for loop 64 (Write)*2								

*1 Error codes are expressed as a four-digit hexadecimal value. For more information, see the Error Code Details.

*2 The (Write) in the above table indicates the areas where the user enters data using a program. (It is also possible to read data.)

(b) Word table and bit table for each loop

[If the content of xxxx+5 in (a) is ADRIO (xxxx+5, yyyy)]

Address	Contents	Specifications	Notes	Remarks
уууу	ADRIO (yyyy, zzzz) zzzz is the header number of the bit internal output.	Sets the header address of the bit table.	Uses 16 bits per loop. Set the actual address of the header number using the ADRIO command so the last suffix of the bit internal output is not exceeded.	11]
уууу + 1	Sampling time TZ	When 1 to 200 (× 20 ms) analog I/O is installed in a basic base or extended base.	 Set a multiple of the minimum set value. The minimum set value is the value set to the number of loops 3]. 	12]
yyyy + 2	Proportional gain KP	- 1,000 to +1,000	Corresponds to -10.00 to $+10.00$.	13]
yyyy + 3	Integral content Ti/TZ	1 to 32,767	Value is set to Ti/(Sampling time x 20 ms)	14]
yyyy + 4	Derivative constant TD/TZ	1 to 32,767	Value is set to Ti/(Sampling time x 20 ms)	15]
yyyy + 5	Derivative delay constant Tn/TZ	1 to 32,767	Value is set to Ti/(Sampling time x 20 ms)	16]
yyyy + 6	Output upper limit value UL	– 32,767 to 32,767	The following condition must be met.	17]
yyyy + 7	Output low limit value LL	- 32,767 to 32,767	$LL \leq INIT \leq UL$	18]
yyyy + 8	Initial value INIT	- 32,767 to 32,767		19]
yyyy + 9	Set value I/O number (Write)	Set the actual address of the word number of the I/O for which the set value is set.		20]
yyyy + A	Measured Value I/O number (Write)	Set the actual address of the word number of the I/O for which the measured value is set.		21]
yyyy + B	Output value I/O Number (Write)	Set the actual address of the word number of the I/O that outputs the PID calculation results.		22]
yyyy + C	Set value bit pattern (Write)	Determine the method that is used to convert the set value to the 16-bit data in which the PID operation is performed. See *3 below and use a value between H0001 and H0004.		23]
yyyy + D	Measured value bit pattern (Write)	Determine the method that is used to convert the data read from the measured value I/O number 21] to the 16-bit data. (See the set value bit pattern 23].)		24]
уууу + Е	Output value bit pattern (Write)	 Write to the output value I/O number 22] after converting the results of the FUN 2 process or PID calculation according to the output value bit pattern 25]. Use a value between H0001 and H0004 in *4 depending on the type of output I/O. 		25]
$yyyy + F \downarrow yyyy + 2F$	PID calculation area (Cannot be used by the user)	Do not use this in user programs because this is used by FUN 0, FUN 1, and FUN 2 processing.		26]

*3 *4

Refer to the following page (set value bit pattern) for details. Refer to the following page (output value bit pattern) for details.

■ Set value b	it pattern												
H0001 : 8-bit	→ 16-bit												
Before	b_{15} b_{14} b_{13} b_{12} b_{11} b_{10} b_9 b_8 b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0												
After	$0 \ \ \ 0 \ \ \ 0 \ \ 0 \ \ \ 0 \ \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ \ 0 \ \ \ \ 0 \ \ \ 0 \ \ \ \ 0 \ \ \ 0 \$												
	Set 0. Move b_7 through b_0 to b_{11} through b_4 Set 0.												
H0002 : 12-bi	t unsigned → 16-bit												
Before	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
After	$ \begin{matrix} 0 & 0 & 0 & b_{11} & b_{10} & b_9 & b_8 & b_7 & b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 \end{matrix} $												
	Set 0. b_0 through b_{11} are left as they are.												
H0003 : 12-bi	t signed \rightarrow expand the sign to 16-bit												
Before	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
After	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
	Copy b_{11} to b_{12} and b_{15} . Move b_0 through b_{10} to b_1 through b_{11} . Set 0.												
H0004 : Do no													
Output value													
H0001 : 16-bi													
Before	$b_{15} b_{14} b_{13} b_{12} b_{11} b_{10} b_{9} b_{8} b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$												
After	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
	Set 0. Move b_{11} through b_0 to b_7 through b_0												
	If values are H0FFF through H7FFF before conversion, the values are converted to H00FF.												
	If values are H8000 through HFFFF before conversion, the values are converted to H0000.												
H0002 : 16-bi	t → 12-bit												
Before	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
After	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
	Set 0. b_{11} through b_0 are left as they are.												
	If values are H0FFF through H7FFF before conversion, the values are converted to H00FF.												
	If values are H8000 through HFFFF before conversion, the values are converted to H0000.												
H0003 : 16-bi	t signed \rightarrow 12-bit signed												
Before	b_{15} b_{14} b_{13} b_{12} b_{11} b_{10} b_{9} b_{8} b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}												
After	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
	Set 0. Move b_1 through b_{12} to b_0 through b_{11}												
	If values are H0FFF through H7FFF before conversion, the values are converted to H07FF.												
	If values are H8000 through HF000 before conversion, the values are converted to H0800.												

H0004 : Do not convert

ZZZZ Execution flag • When the Execution flag stars up (0 → 1), the PID constant at the ine is checked and the PID calculation value is initialized. If successful, the PID RUN flag S8] is set to "1". If there is an environ, the PID RUN flag S8] is set to "0" and PID calculation will end and the end of and PID calculation will flag S8] is set to "0" and PID calculation will end and the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is tamed from OFF → ON, the PID constant Change flag is the T", if revers the output value to its initial value. It performs the following output depending on the relationship between Output Upper Limit Value 17]. Output Lower Limit Value 18] and Initial Values 19] = Output Upper Limit Value 17]. Output Lower Limit Value 18] and Initial Values 19] 53] ZZZZ + 4 R flag (Write) When the R Hag is set to "1", if reverts the output value to 0. 54 ZZZZ + 5 FIRE flag 0: Calculate PID without performing triggals of derivatives. 55 <	Address	PID management table	Details	Remarks
Image: The comput will become "0." The computes flag 511 ZZZ + 1 No-humpless flag 511 512 ZZZ + 2 PID constant change flag When the PID constant (Thange flag is sturned from OFF ON, the PID constant that is used for the PID calculation is read again, and this value is used to perform calculations. 521 ZZZ + 1 PID constant change is complete, this flag must be turned OFF by the user. • If there is an error in the PID constant (PID Constant OK =- 0), the PID constant on value based on the previous PID constant will be used and the operation value based on the previous PID constant will be used and the operation value based on the previous PID constant (VID Constant OK =- 0), the PID calculation value based on the previous PID constant (VID Constant OK =- 0), the PID calculation value based on the previous PID constant (VID Constant OK =- 0), the PID calculation value based on the previous PID constant (VID Constant OK =- 0), the PID calculation value based on the previous PID constant (VID Constant OK =- 0), the PID calculation value based on the previous PID constant (VID Constant OK =- 0), the PID calculation value based on the previous PID constant (VID Constant OK =- 0), the PID calculation value based to previous PID constant (VID Constant OK =- 0), the PID calculation value based to previous PID constant (VID Constant OK =- 0), the PID calculation value based to previous PID constant OK =- 0), the PID calculation value based to previous PID constant OK =- 0, the PID calculation value based to previous PID constant (VID VID VID VID VID VID VID VID VID VID	ZZZZ		 that time is checked and the PID calculation value is initialized. If successful, the PID RUN flag 58] is set to "1." If there is an error, the PID RUN flag 58] is set to "0" and PID calculation will not be performed. PID calculation is performed while the Execution flag = 1. 	50]
(Write) 1: Perform non-bumpless processing 2222 + 2 PID constant change flag (Write) 52] Write) • When the PID constant that is used for the PID calculation is read again, and this value is used to perform calculations. • After the PID constant that is used for the PID calculation is read again, and this value is used to perform calculations. • After the PID constant that is used for the PID calculation is read again, and this value of the performs the following output depending on the relationship between Output Upper Limit Value 17]. Output Lower Limit Value 18], and Initial Values 19]. Output Lower Limit Value 18] > Output Upper Limit Value 17]. No output 53] 2222 + 4 R flag (Write) When the R flag is set the "1", "1 reverts the output value 17] Output Lower Limit Value 18] > Output Upper Limit Value 17] 54] 2222 + 4 R flag (Write) When the R flag is set the "1", "1, clears the output value 17] 54] 2222 + 4 R flag (Write) When the R flag is set the "1", "1, clears the output value 17] 54] 2222 + 4 R flag (Write) When the R flag is set the "1", "1, clears the output value 17] 54] 2222 + 4 R flag (Write) When the R flag is set the "1", "1, clears the output value to 0. 54] 2222 + 5 D-RKki flag 0: Calculate PID without performing integrals or derivatives.			the output will become "0."	
(Write) the PID constant that is used for the PID calculation is read again, and this value is used to perform calculations. • After the PID constant change is complete, this flag must be turned OFF by the user. 2222 + 3 S flag (Write) When the S flag is set to '1', it reverts the output value to its initial be used and the operation will continue. 53] 2222 + 3 S flag (Write) When the S flag is set to '1', it reverts the output value to its initial builts. Pig. Output Lower Limit Value 17], Output Lower Limit Value 17], Output Lower Limit Value 17], Output Lower Limit Value 18] S output Upper Limit Value 17] output Upper Limit Value 17] 53] 2222 + 4 R flag (Write) When the S flag is set to '1', it clears the output value to its initial values 19] Output Lower Limit Value 18] S Output Upper Limit Value 17] Comput Soutput Upper Limit Value 17] 53] 2222 + 4 R flag (Write) When the R flag is set to '1', it clears the output value to 0. 54] 2222 + 5 D+FRET flag 0: Calculate PID using integrals or derivatives. 55] 2222 + 6 Unused - 53] 2222 + 7 Unused - - 2222 + 7 Unused - - 54] 2222 + 7 Unused - - - 2222 + 8 PID calculation in progress flag • -	zzzz + 1		1 : Perform non-bumpless processing	51]
ZZZZ + 3 S flag (Write) When the S flag is set to '1', it reverts the output value to its initial value. It performs the following output depending on the relationship between Output Upper Limit Value 17]. Output Lower Limit Value 18] > Output Upper Limit Value 17]. Output Lower Limit Value 18] > Output Upper Limit Value 19] > Output Lower Limit Value 18] > Output Upper Limit Value 19] > Output Upper Limit Value 17] No output Output Lower Limit Value 18] > Output Upper Limit Value 17] > Unitput Lower Limit Value 18] > Output Upper Limit Value 17] > Initial Values 19] > Output Lower Limit Value 18] > Output Upper Limit Value 17] = Initial Values 19] > Output Lower Limit Value 18] > Output Lower Limit Value 19] > Output Lower Limit Value 18] > Output Lower Limit Value 19] > Output Lower Limit Value 18] > Output Lower Limit Value 19] > Output Lower Limit Value 18] > Output Lower Limit Value 18] > Output Lower Limit Value 19] > Output Lower Limit Value 18] > Output Lower Limit Value 19] > Output Lower Limit Value 18] > Output Lower Limit Value 19] > Output Value 20] > Output Lower Limit Value 19] > Ou	zzzz + 2		 the PID constant that is used for the PID calculation is read again, and this value is used to perform calculations. After the PID constant change is complete, this flag must be turned OFF by the user. If there is an error in the PID constant (PID Constant OK = 0), the PID calculation value based on the previous PID constant will 	52]
zzzz + 4R flag (Write)When the R flag is set to "1", it clears the output value to 0.54]zzzz + 5D-FREI flag (Write)0: Calculate PID without performing integrals or derivatives.55]zzzz + 6Unused	zzzz + 3	S flag (Write)	When the S flag is set to "1", it reverts the output value to its initial value. It performs the following output depending on the relationship between Output Upper Limit Value 17], Output Lower Limit Value 18], and Initial Values 19]. Output Lower Limit Value 18] > Output Upper Limit Value17] No output Output Lower Limit Value 18] \leq Initial Value 19] \leq Output Upper Limit Value 17] No output Lower Limit Value 18] \leq Output Upper Limit Value 17] \leq Initial Values 19] \leq Output Lower Limit Value 18] \leq Output Upper Limit Value 17] \leq Initial Values 19] \leq Outputs Output Upper Limit Value 17] Initial Values 19] \leq Output Lower Limit Value 18] \leq Output Upper Limit Value 17] Initial Values 19] \leq Output Lower Limit Value 18] \leq Output Upper Limit Value 18] \leq Output Lower Limit Value 18] \leq	53]
(Write)1 : Calculate PID using integrals or derivatives.ZZZZ + 6Unused	zzzz + 4	R flag (Write)		54]
zzzz + 7 Unused • zzzz + 8 PID RUN flag (Read) • When the FUN 1 detects the startup of the Execution flag 50], 12] through 16] and 20] through 22] will be checked for logical validity and the result will be set to the PID RUN flag 58]. 58] zzzz + 8 PID calculation in progress flag (Read) • When the FUN 1 detects the startup of the Execution flag 50], 1: Valid 0: Invalid 58] zzzz + 9 PID calculation in progress flag (Read) • Sets the PID Calculation in Progress flag 59] in the loop in which the FUN 2 calculates the PID to "1," and sets all PID Calculation in Progress flags in other loops to "0." 59] zzzz + A PID constant OK flag (Read) • When the FUN 1 detects the startup of the PID Constant Change flag 52], the PID constants 12] through 16] will be checked for logical validity and the result will be set in the PID Constant OK Flag 60]. 60] zzzz + C Lower limit over flag (Read) • If the PID output value calculated by the FUN 2 is greater than the output upper limit UL 17], the Upper Limit Over flag 61] will be set to "1." 61] zzzz + D FUN 2 error flag (Read) • If the PID output value calculated by the FUN 2 is greater than the output lower limit LL 18], the Lower Limit Over flag 62] will be set to "1." 63] zzzz + D FUN 2 error flag (Read) When there is an error in the output upper limit value 17], output lower limit value 18], or in any of the bit patterns 23] through 25] during FUN 2 processing, the FUN 2 Error 63] will be		(Write)		55]
zzzz + 8PID RUN flag (Read)• When the FUN 1 detects the startup of the Execution flag 50], 12] through 16] and 20] through 22] will be checked for logical validity and the result will be set to the PID RUN flag 58]. 1 : Valid 0 : Invalid • If the Execution flag 50] startup is detected by the FUN 1 when the PID RUN flag 58] = 1, PID RUN 58] becomes 0 and the PID process will end.59]zzzz + 9PID calculation in progress flag (Read)• Sets the PID Calculation in Progress flag 59] in the loop in which the FUN 2 calculates the PID to '1,'' and sets all PID Calculation in Progress flags in other loops to '0.''59]zzzz + APID constant OK flag (Read)• When the FUN 1 detects the startup of the PID constant Change flag 52], the PID constants 12] through 16] will be checked for logical validity and the result will be set in the PID Constant OK Flag 60].60]zzzz + BUpper limit over flag (Read)• If the PID output value calculated by the FUN 2 is greater than the output lower limit UL 17], the Upper Limit Over flag 61] will be set to '1.''61]zzzz + DFUN 2 error flag (Read)• If the PID output value calculated by the FUN 2 is greater than the output lower limit LL 18], the Lower Limit Over flag 62] will be set to '1.''63]zzzz + DFUN 2 error flag (Read)When there is an error in the output upper limit value 17], output lower limit value 18], or in any of the bit patterns 23] through 25] during FUN 2 processing, the FUN 2 Error 63] will be set to '1.'' The cause of the error is generated. If there is no error, the FUN 2 Error flag 63] = 0. Nothing will be set to error code 2 2].63]				
zzzz + 9PID calculation in progress flag (Read)• Sets the PID Calculation in Progress flag 59] in the loop in which the FUN 2 calculates the PID to "1," and sets all PID Calculation in Progress flags in other loops to "0."59]zzzz + APID constant OK flag (Read)• When the FUN 1 detects the startup of the PID constant Change flag 52], the PID constant 12] through 16] will be checked for logical validity and the result will be set in the PID Constant OK Flag 60].60]zzzz + BUpper limit over flag (Read)• If the PID output value calculated by the FUN 2 is greater than the output upper limit UL 17], the Upper Limit Over flag 61] will 		PID RUN flag	 12] through 16] and 20] through 22] will be checked for logical validity and the result will be set to the PID RUN flag 58]. 1 : Valid 0 : Invalid If the Execution flag 50] startup is detected by the FUN 1 when the PID RUN flag 58] = 1, PID RUN 58] becomes 0 and the PID 	58]
zzzz + A (Read)PID constant OK flag (Read)• When the FUN 1 detects the startup of the PID Constant Change flag 52], the PID constants 12] through 16] will be checked for logical validity and the result will be set in the PID Constant OK Flag 60].60]zzzz + BUpper limit over flag (Read)• If the PID output value calculated by the FUN 2 is greater than the output upper limit UL 17], the Upper Limit Over flag 61] will be set to "1."61]zzzz + CLower limit over flag (Read)• If the PID output value calculated by the FUN 2 is greater than the output upper limit LL 18], the Lower Limit Over flag 62] will be set to "1."62]zzzz + DFUN 2 error flag (Read)When there is an error in the output upper limit value 17], output lower limit value 18], or in any of the bit patterns 23] through 25] during FUN 2 processing, the FUN 2 Error 63] will be set to "1." The cause of the error is set in error code 2 2]. PID calculation will still be executed even if an error is generated. If there is no error, the FUN 2 Error flag 63] = 0. Nothing will be set to error code 2 2].63]zzzz + EUnusedUnusedImage: Set to error code 2 2].Image: Set to error code 2 2].	zzzz + 9		• Sets the PID Calculation in Progress flag 59] in the loop in which the FUN 2 calculates the PID to "1," and sets all PID Calculation	59]
zzzz + BUpper limit over flag (Read)• If the PID output value calculated by the FUN 2 is greater than the output upper limit UL 17], the Upper Limit Over flag 61] will be set to "1."61]zzzz + CLower limit over flag (Read)• If the PID output value calculated by the FUN 2 is greater than the output lower limit LL 18], the Lower Limit Over flag 62] will be set to "1."62]zzzz + DFUN 2 error flag (Read)When there is an error in the output upper limit value 17], output lower limit value 18], or in any of the bit patterns 23] through 25] during FUN 2 processing, the FUN 2 Error 63] will be set to "1." The cause of the error is set in error code 2 2]. PID calculation will still be executed even if an error is generated. If there is no error, the FUN 2 Error flag 63] = 0. Nothing will be set to error code 2 2].63]zzzz + EUnusedUnusedValue 22].	zzzz + A		• When the FUN 1 detects the startup of the PID Constant Change flag 52], the PID constants 12] through 16] will be checked for logical validity and the result will be set in the PID Constant OK Flag 60].	60]
zzzz + CLower limit over flag (Read)• If the PID output value calculated by the FUN 2 is greater than the output lower limit LL 18], the Lower Limit Over flag 62] will be set to "1."62]zzzz + DFUN 2 error flag (Read)When there is an error in the output upper limit value 17], output lower limit value 18], or in any of the bit patterns 23] through 25] during FUN 2 processing, the FUN 2 Error 63] will be set to "1." The cause of the error is set in error code 2 2]. PID calculation will still be executed even if an error is generated. If there is no error, the FUN 2 Error flag 63] = 0. Nothing will be set to error code 2 2].63]zzzz + EUnusedUnusedUnused	zzzz + B		• If the PID output value calculated by the FUN 2 is greater than the output upper limit UL 17], the Upper Limit Over flag 61] will	61]
zzzz + DFUN 2 error flag (Read)When there is an error in the output upper limit value 17], output lower limit value 18], or in any of the bit patterns 23] through 25] during FUN 2 processing, the FUN 2 Error 63] will be set to "1." The cause of the error is set in error code 2 2]. PID calculation will still be executed even if an error is generated. If there is no error, the FUN 2 Error flag 63] = 0. Nothing will be set to error code 2 2].63]zzzz + EUnused	zzzz + C		• If the PID output value calculated by the FUN 2 is greater than the output lower limit LL 18], the Lower Limit Over flag 62] will be set to "1."	62]
zzzz + F Unused		(Read)	lower limit value 18], or in any of the bit patterns 23] through 25] during FUN 2 processing, the FUN 2 Error 63] will be set to "1." The cause of the error is set in error code 2 2]. PID calculation will still be executed even if an error is generated. If there is no error, the FUN 2 Error flag 63] = 0. Nothing will be	63]
	-			

(c) Details of word tables used for each loop

(2) PID operation execution format

PID Operation Execution Control (3 loops)

(3) PID operation timing chart

(a) Timing chart example 1

The following timing chart shows the operation of the PID RUN flag, PID constant OK flag, PID calculation in progress flag, FUN 0, FUN 1, and FUN 2 when the execution flag and PID constant change flag is turned from ON to OFF in a single loop.

Description of timing chart example 1

- 1] This is ignored since FUN 0 is not executed properly even when the execution flag, 2] and 3] of the PID constant change flag are turned on.
- 4] No process will be performed even if FUN 1 is executed because there was an error in the PID related table during FUN 0 processing.
- 5] 6] FUN 1 processing will be started because the FUN 0 processing ended normally.
- 7] FUN2 will not perform PID calculations because the execution flag is off.
- 8] 9] FUN 1 will detect turning on of the execution flag and will check the PID constant. Since it is normal, the PID constant will be calculated and the PIDRUN flag will be turned on.
- 10] The PID calculation of FUN 2 will not be performed on the first scan, so it will start with 11] FUN 2.
- 11] FUN 2 will turn the PID calculation in progress flag before calculating the PID.
- 12] FUN 1 will turn off the PID calculation in progress flag.
- 13] 14] FUN 1 checks the PID constant when the PID constant change flag is turned on. Since it is normal, the PID constant OK flag is turned on and the PID constant will be changed.
- 15] Since PID calculations are not performed in FUN 2, PID calculations will be performed from 16] FUN 2 according to the PID constant after it has been changed.
- 17] When the PID constant change flag was turned on, 18] FUN 1 checked the PID constant. An error was detected, so the PID constant OK flag is turned off. The PID constant flag will not be changed.
- 19] FUN 0 will be ignored when re-executed during PID operation.
- 20] Since 21] FUN 1 detected turning off of the execution flag, the PIDRUN flag will be turned off and the output will be set to 0.
- 21] Since 23] FUN 1 detected turning on of the PID constant change flag when the execution flag was off, the PID constant will be checked. Since it is valid, the PID constant will be changed and the PID constant OK flag will be turned on.
- 24] Since 25] FUN 1 detected turning on of the PID constant change flag when the execution flag was off, the PID constant will be checked. Since there was an error, the PID constant OK flag will be turned OFF.
- 26] 27] FUN 1 will detect turning on of the execution flag and check the PID constant. Since an error was detected, the PIDRUN flag will be turned off.
- 28] Since 29] FUN 1 detected turning on of both the execution flag and the 32] PID constant change flag simultaneously, turning on of the 32] PID constant change flag will be ignored. 29] FUN 1 checks the PID constant, and since it is normal, the PIDRUN flag will be turned on. PID calculation will be started from 33] FUN 2.
- 30] 31] If the execution flag turns from on to off in a timing such that the cyclic interrupt cannot detect it, it will be ignored.

(b) Timing chart example 2

The following is an operation timing chart in respect to the S flag and R flag (bumpless).

- S flag.....Sets the output value to the initial value.
- R flag.....Sets the output value to 0.

- a] g] The output value is still INIT because the S flag takes priority.
- b] e] The output value is retained since the execution flag is off.
- c] j] The output value is set to INIT because the S flag takes priority.
- d] k] The output value will be 0 wince the R flag is on when the S flag turns off.
- f] The output value will be INTT.
- h] l] The output value will continuously move toward the target value since the execution flag is on and bumpless.
- i] The output value will be 0.

(c) Timing chart example 3

Bumpless and non-bumpless

b] When the S flag and R flag turn from on to off, the output value will continuously change to move toward the set value.

e] When the S flag and R flag turn from on to off, the output value will abruptly change to move toward the set value.

(4) PID command error code details

Error codes are shown using a 4-digit hexadecimal value.

(a) Error code 0

The error codes generated in FUN 0 processing and some parts of FUN 1 processing are set in error code 0.

If there is no error, the previous status will be maintained.

Error	Contents and cause	Corrective action	Remarks
code			(FIDIO 1 1. C)?
0001	The FUN 0 was executed again after the FUN 0 had been successfully completed.	Do not execute the FUN 0 after it has been executed successfully.	"FUN 0 normal completion 5]" maintains the previous value.
0002	The number of loops 3] is 0.	-	maintains the previous value.
0002	The number of loops 5] is 0.	Set the number of loops 3] to a value between the range of 1 to 64.	
0003	The number of loops 3] exceeds 65.	Set the number of loops 3] to a value	
0005	The number of loops 5] exceeds 05.	between the range of 1 to 64.	
0004	The PID control table exceeds the maximum number of WR.	Change the head of PID management table or the number of loops 3] so that	The size of the PID management table will change. If the number
		the maximum number of WR is not	of loops 3] exceeds the suffix of
		exceeded.	the I/O, "FUN 0 normal
			completion 5]" will maintain the previous value.
××05	The word table of loop \times exceeds the	Set the number in the WR for the loop	The size of the bit table is 16 bits
	maximum number of WR.	4] again.	per loop.
××06	The bit table of loop $\times \times$ exceeds the	Set the bit number for R 11] again.	The size of the bit table is 16 bits
	maximum number of R.		per loop.
$\times \times 07$	The output upper limit value 17] in loop	Set the output upper limit value 17] to	
	×× is outside of range.	a value between –32,767 and 32,767.	
××08	The output lower limit value 18] in loop	Set the output lower limit value 18] to	
××09	×× is outside of range. The initial value 19] in loop ×× is outside	a value between -32,767 and 32,767.	
^~09	of range.	Set the initial value 19] to a value between -32,767 and 32,767.	
××0A	There is an error in the size relationship	Perform settings so that the output	
	between the output upper limit value 17],	lower limit value $18] \leq$ initial value	
	output lower limit value 18], and initial	$19] \leq \text{output upper limit value 17] is}$	
	value 19].	met.	
××0B	The set value bit pattern 23] in loop $\times \times$ is	Set the set value bit pattern 23] to a	
	outside of range.	value between 1 to 4.	
××0C	The measured value bit pattern 24] in	Set the measured value bit pattern 24]	
××0D	loop ×× is outside of range. The output value bit pattern 25] in loop	to a value between 1 to 4. Set the output value bit pattern 25] to a	
^^UD	×× is outside of range.	value between 1 to 4.	
0020	The FUN 1 is being executed when the	Do not run the FUN 1 until the FUN 0	Set to the error code 0 specified
(Note)	FUN 0 is not successfully completed.	is successfully executed.	by the (S) in the FUN 1 (S).
0021	The S in the FUN 1 (S) is different from	Set the same WR for the S in the FUN	Set to the error code 0 specified
(Note)	the S in the FUN 0 (S) of the PID	1(S) and the S in the FUN 0 (S).	by the (S) in the FUN 1 (S).
, ,	management table.		
	rear and as 0020 and 0021 will over write th	1 1 (0001)	

(Note) Error codes 0020 and 0021 will over-write the errors generated previously (0001 to ××0D). Therefore, execute the FUN 1 after verifying that the FUN 0 is successfully executed.

(b) Error code 1

The error code generated in the FUN 1 process is set in error code 1. If there is no error, the previous condition is maintained.

Error code	Contents and cause	Corrective action	Remarks			
0020	The FUN 1 is being executed when the FUN 0 is not successfully completed.	Do not run the FUN 1 until the FUN 0 is successfully executed.	Set to the error code 0 specified by the (S) in the FUN 1 (S).			
0021	The S in the FUN 1 (S) is different from the S in the FUN 0 (S) of the PID management table 1].	Set the same WR number for the S in the FUN 1(S) and the S in the FUN 0 (S).	Set to the error code 0 specified by the (S) in the FUN 1 (S).			
××22	There is an error in the set value I/O number 20] in loop ××.	Set the set value I/O number 20] using the ADRIO command.	These are errors that may be generated when the Execution flag			
××23	There is an error in the measured value I/O number 21] in loop ××.	Set the measured value I/O number 21] using the ADRIO command.	starts up.			
××24	There is an error in the output value I/O number 22] in loop $\times\times$.	Set the output value I/O number 22] using the ADRIO command.				
××25	The sampling time 12] of loop $\times \times$ is out of range.	Set the sampling time 12] to a value within the range of 1 to 200.	These are errors that may be generated when the Execution flag			
××26	The sampling time 12] of loop $\times \times$ is not a multiple of the number of loops 3].	Set the sampling time 12] so that it becomes a multiple of the number of loops 3].	starts up or when the PID Constant Change flag starts up.			
××27	The proportional gain 13] of loop $\times \times$ is out of range.	Set the proportional gain 13] to a value within the range of $-1,000$ to 1,000.				
××28	The integral constant 14] of loop $\times \times$ is out of range.	Set the integral constant 14] to a value within the range of 1 to 32,767.				
××29	The derivative constant 15] of loop ×× is out of range.	Set the derivative constant 15] to a value within the range of 1 to 32,767.				
××2A	The derivative delay constant 16] of loop $\times \times$ is out of range.	Set the derivative delay constant 16] to a value within the range of 1 to 32,767.				
××30	There is an error in the size relationship between the output lower limit value 18] and output upper limit value 17] in loop $\times \times$.	Set the values so that the output lower limit value $18] \leq$ output upper limit value 17] is satisfied.	There is a possibility that this error is generated when the S flag 53] is turned ON while the PID RUN flag 58] is OFF.			
××31	There is an error in the output value I/O number 22] in loop ××.	Set the output value I/O number 22] using the ADRIO command.	There is a possibility that these errors are generated when the S flag 53] or R flag 54] is turned on while the PID RUN flag 58] is			
××32	The output value bit pattern 25] in loop $\times\times$ is outside of range.	Set the output value bit pattern 25] to a value between 1 and 4.	OFF.			

(c) Error code 2

Error code	Contents and cause	Corrective action	Remarks (Reserv)			
0040						
××41	The set value bit pattern 23] in loop $\times \times$ is outside of range.	Set the set value bit pattern 23] to a value between 1 to 4.	When the bit pattern is outside of range, the process will continue			
××42	The measured value bit pattern 24] in loop $\times \times$ is outside of range.	Set the set value bit pattern 24] to a value between 1 to 4.	based on "4. Do not convert."			
××43	The output value bit pattern 25] in loop $\times\times$ is outside of range.	Set the output value bit pattern 25] to a value between 1 to 4.				
××44	There is an error in the size relationship between the output lower limit value 18] and output upper limit value 17] in loop ××.	Set the values so that the output lower limit value $18] \leq$ output upper limit value 17] is satisfied.	If there is a size relationship error, the process will continue but there will be no output.			

(5) Program example

This program is an example comprised of three loops. This program also rewrites the PID constant every time the CPU starts a RUN process.

Loop Initialization

Loop monitor

20ms cyclic scan

The program on this page can also be as shown below.

Ν	Name	Process stepping	,												
	L	adder format				Cor	ndition c	ode			Proc	essin	g time	(μ s)	Remark
		FUN 4 (s)		F	R7F4	R7F3	R7F2	R7F	-1 F	R7F0	Ave	ve	Ma	ax	
	* [IFR (s)]				DER	ERR	SD	V		С					
	* [IFK (S)]				\uparrow	•	•	•		•					
	Command format				Number of steps					6)2	←			
		FUN 4 (s)			Condition			Steps							
		* [IFR (s)]			- 3										
					Bit			Word			Double word			ant	
	Usable I/O X		Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other	
				М	CU, CT			WM				DM	ŭ		
s	s Argument								0						s uses up to s+3.
	Functio	n													

Function

S Previous process condition I/O number

s+1 Process set I/O number

s+2 Next process (clear condition) I/O number

s+3 Used by the system

• When the I/O designated by s (previous process) switches on, the s+1 (process set) switches on and the state is retained. (The previous process condition is triggered by edge.)

• When the I/O designated by s+2 (next process) switches on, the s+1 (process set) is switched off. (The next process is triggered by level.)

• When s (previous process) and s+2 (next process) are both on, the s+2 (next process) has the priority.

• The user should designate output for each process, if necessary.

Cautionary notes

- Set the actual R, L and M address for the parameters s through s+2 using the ADRIO command.
- If the areas designated by s to s+2 overlap, if s+1, s+2 or s+3 falls out of range, DER will be equal to "1" and the command will not be processed.
- Do not designate the same I/O for arguments of different processes, since the action of the current process is levelled by the previous process.
- Each process requires at least one scan time.

In the program example described previously, the external I/O (X, Y) are used as switch signals of a process; thus, the time for performing I/O refresh (i.e., at least one scan period) is required for each process.

Name SIN function													
Ladder format				Cor	ndition o	ode			Proc	essin	g time	e (μs)	Remark
FUN 10 (s)		F	R7F4	R7F3	R7F2	R7I	-1 R	R7F0	A١	ve	M	ax	
* [SIN (s)]		[DER	ERR	SD	V		С					
[511((3)]			\uparrow	•	•	•		•					
Command format				Num	nber of s	steps			8	1	•	<u>.</u>	
FUN 10 (s)			(Conditior	า		Steps	6					
* [SIN (s)]				—			3						
			Bit			W	ord		Dou	uble v	vord	ant	
Usable I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argument							0						s uses up to s+2.
Function													
s+2 standard	sing the 2 and s- in a bin ned nor value egrees	e unsi +1, re hary v mally obta	spectiv value, a y, DER ined l	vely. and negat t is equal by multi $e^{0^\circ} \le s \le 1$	ue desig ive valu to "0". plying 360°.	es are the a	using s indicat ctual v her va	ted in value	two's by 6:	compl 5,535	R to "	ts. 1" and	the operation will not
Program example X0 DIF0 Program description • An angle of 40° is set in W • SIN operation is performed whole number portion is set Execution results: WR010	R0100 l at the t in WI	leadin R0102	(WR100 ng edg 2 as bi	e of X00 nary valu	es.			AN [W] FU]	0 X00 ND DIF R0100 IN 10 (0 = 40 WR010		set in	n WR0101 and the

Name COS function												
Ladder format			Cor	ndition c	ode			Proc	essin	g time	e (μs)	Remark
FUN 11 (s)		R7F4	R7F3	R7F2	R7I	-1 R	7F0	A١	ve	M	ax	
* [COS (s)]		DER	ERR	SD	V		С					
[(03 (3)]		\uparrow	•	•	•		•					
Command format			Num	ber of s	steps			8	4	÷	<u>,</u>	
FUN 11 (s)		(Conditior	1		Steps	5					
* [COS (s)]			—			3					-	
		Bit			W	ord		Doι	uble v	vord	ant	
Usable I/O	X Y	R, M	TD, SS,	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argument		IVI	CU, CT			0				DIVI	0	s uses up to s+2.
Function						-						5 4505 up to 5 2.
Function s+2 s+1 15 0 15 Integer portion Fractional p • Calculates the COS value using portions of the result in s+2 an • The COS value is indicated in • If the calculation is performed • The fractional data is the value Cautionary notes • The argument is given in degree be performed. • If s+1 and s+2 exceed the max	g the ur ad s+1, 1 a binar normal e obtain	respectivy value, y value, lly, DER hed by m	vely. and nega is equal ultiplying $0^{\circ} \leq s \leq 1$	lue desig tive valu to "0". g the actu 360°.	aes are ual val	by s a indica ue by d	nted in 65,535	two's	comp al DEl	R to "	nts.	the operation will not
Program example X1 DIF1 Image: Program description • An angle of 110° is set in WR0 • COS operation is performed at whole number portion is set in Execution results: WR0112=H	D110. t the lea	12 as bi	ge of X00 nary value	es.			AN [WI FU]) X00 ID DIF R0110 N 11 (tion o	1 = 110 WR011		s set i	n WR0111 and the

Ladder format Condition code Processing time (µs) Remark FUN 12 (s) $RTF4$ $RTF3$ $RTF2$ $RTF1$ $RTF0$ Ave Max * [TAN (s)] DER RR SD V C V C Command format Number of steps $S1$ $S4$ C $S4$ C FUN 12 (s) Condition Steps $S4$ C $S4$ C *[TAN (s)] $ 3$ O O D D B Usable I/O X Y R TD , SS , WX WY WR TD DS O D D S S s Argument I I D S	Name TAN function													
FUN 12 (s) *[TAN (s)] DER ERR SD V C \downarrow \bullet \bullet \bullet \bullet \bullet \bullet Command format Number of steps 84 \leftarrow FUN 12 (s) *[TAN (s)] $-$ 3 Usable VO X Y R, TD, SS, WX WY WR, TC DX DY DR, $\frac{B}{B}$ Other s Argument $ 3$ \circ \bullet \bullet \bullet s Argument $ 3$ O D D B $Wr Wr, TC DX DY DR, \frac{B}{B} \frac{B}{B} Other s Argument D O O D D B B Wr Wr, TC DX DY DR, \frac{B}{B} O O D $	Ladder format				Con	dition o	ode			Proc	essin	g time	(μs)	Remark
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EUN 12 (s)		F	R7F4	R7F3	R7F2	R7	-1 R	R7F0	A١	/e	M	ax	
Command format Number of steps 84 \leftarrow FUN 12 (s) Condition Steps 84 \leftarrow Image: Steps *[TAN (s)] - 3 Image: Steps Steps Steps Steps Steps Steps Steps Steps Steps Steps Steps Steps Steps	× /				ERR	SD	V		С					
The target of the part	· [IAN (5)]			\uparrow	•	٠	•		•					
$* [TAN (s)] - 3 \\ + [TAN (s)] - 3 \\ - 3 $	Command format				Num	ber of s	steps			8	4	€	<u>.</u>	
Image: Second S	FUN 12 (s)				Condition	1		Steps	6					
Usable I/OXYR, MTD, SS, MWXWYWR, WMTCDXDYDR, DM $\frac{90}{60}$ OthersArgumentIII <t< td=""><td>* [TAN (s)]</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	* [TAN (s)]				_			3						
s Argument Image: CC, C1 I				Bit			W	ord		Dou	uble v	vord	ant	
Function s+2 s+1 15 0 0 Integer portion Fractional portion Fractional portion • Calculates the TAN value using the unsigned binary value designated by s as the argument, and sets the integer and fractional portions of the result in s+2 and s+1, respectively. • The TAN value is indicated in a binary value, and negative values are indicated in two's complements. • If the calculation is performed normally, DER is equal to "0." • The fractional data is the value obtained by multiplying the actual value by 65,535. Cautionary notes • The argument is given in degrees in the 0° ≤ s ≤ 360°. When s is equal to 90° or s is equal to 270°, H7FFF and HFFFF are set for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. • If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. • If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. • If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. • If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. • If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. • If s+1 and s	Usable I/O	Х	Y			WX	WY		TC	DX	DY	-	Const	Other
s+2 s+1 s 15 0 15 0 0 Integer portion Fractional portion \Box_{TAN} 0 to 360° • Calculates the TAN value using the unsigned binary value designated by s as the argument, and sets the integer and fractional portions of the result in s+2 and s+1, respectively. • The TAN value is indicated in a binary value, and negative values are indicated in two's complements. • If the calculation is performed normally, DER is equal to "0." • The fractional data is the value obtained by multiplying the actual value by 65,535. Cautionary notes • The argument is given in degrees in the 0° ≤ s ≤ 360°. When s is equal to 90° or s is equal to 270°, H7FFF and HFFFF are set for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. • If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. • If set 1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. • If set 1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. • If $V_{ND 102}$ $V_{R0105} = 45$ FUN 12 (WR105) 1 No poration is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values.	s Argument							0						s uses up to s+2.
 15 0 15 0 Integer portion Fractional portion TAN 0 to 360° Calculates the TAN value using the unsigned binary value designated by s as the argument, and sets the integer and fractional portions of the result in s+2 and s+1, respectively. The TAN value is indicated in a binary value, and negative values are indicated in two's complements. If the calculation is performed normally, DER is equal to "0." The fractional data is the value obtained by multiplying the actual value by 65,535. Cautionary notes The argument is given in degrees in the 0° ≤ s ≤ 360°. When s is equal to 90° or s is equal to 270°, H7FFF and HFFFF are set for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. Program example X2 DIF2 WR105 = 45 FUN 12 (WR105) I 2 (WR105) An angle of 45° is set in WR0105. An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 	Function													
Integer portion Fractional portion		s+1					S							
 Calculates the TAN value using the unsigned binary value designated by s as the argument, and sets the integer and fractional portions of the result in s+2 and s+1, respectively. The TAN value is indicated in a binary value, and negative values are indicated in two's complements. If the calculation is performed normally, DER is equal to "0." The fractional data is the value obtained by multiplying the actual value by 65,535. Cautionary notes The argument is given in degrees in the 0° ≤ s ≤ 360°. When s is equal to 90° or s is equal to 270°, H7FFF and HFFFF are set for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. Program example X2 DIF2 WR105 = 45 FUN 12 (WR105) J Program description An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 				4										
 portions of the result in s+2 and s+1, respectively. The TAN value is indicated in a binary value, and negative values are indicated in two's complements. If the calculation is performed normally, DER is equal to "0." The fractional data is the value obtained by multiplying the actual value by 65,535. Cautionary notes The argument is given in degrees in the 0° ≤ s ≤ 360°. When s is equal to 90° or s is equal to 270°, H7FFF and HFFFF are set for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. Program example X2 DIF2 WR105 = 45 FUN 12 (WR105) WR0105 = 45 FUN 12 (WR105) Program description An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 	Integer portion Fraction	al port	ion	$\langle =$	□ TAN	0	to 36)°						
 The TAN value is indicated in a binary value, and negative values are indicated in two's complements. If the calculation is performed normally, DER is equal to "0." The fractional data is the value obtained by multiplying the actual value by 65,535. Cautionary notes The argument is given in degrees in the 0° ≤ s ≤ 360°. When s is equal to 90° or s is equal to 270°, H7FFF and HFFFF are set for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. Program example X2 DIF2 WR105 = 45 FUN 12 (WR105) ID X00002 AND DIF2 WR105 = 45 FUN 12 (WR105) Program description • An angle of 45° is set in WR0105. • TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values.		-		-	-	lue desi	gnated	l by s a	s the a	irgum	ent, ar	nd sets	the in	nteger and fractional
 If the calculation is performed normally, DER is equal to "0." The fractional data is the value obtained by multiplying the actual value by 65,535. Cautionary notes The argument is given in degrees in the 0° ≤ s ≤ 360°. When s is equal to 90° or s is equal to 270°, H7FFF and HFFFF are set for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. Program example X2 DIF2 WR105 = 45 FUN 12 (WR105) WR105 = 45 FUN 12 (WR105) Program description An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 	*		-		2	tivo voli	100 014	india	ntad in	two's	comr	lomor	nte	
Cautionary notes • The argument is given in degrees in the 0° ≤ s ≤ 360°. When s is equal to 90° or s is equal to 270°, H7FFF and HFFFF are set for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. • If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. Program example X2 DIF2 WR105 = 45 FUN 12 (WR105) Image: Program description • An angle of 45° is set in WR0105. • TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values.			-		-			muica	iicu iii	two s	comp	nemer	115.	
 The argument is given in degrees in the 0° ≤ s ≤ 360°. When s is equal to 90° or s is equal to 270°, H7FFF and HFFFF are set for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. Program example X2 DIF2 WR105 = 45 FUN 12 (WR105) Program description An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 	-			-	-		ual va	lue by	65,535	5.				
for s+2 and s+1, respectively. If s falls outside the range, DER is equal to "1" and the operation will not be performed. • If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. Program example X2 DIF2 WR105 = 45 FUN 12 (WR105) Program description • An angle of 45° is set in WR0105. • TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values.	Cautionary notes													
 If s+1 and s+2 exceed the maximum value for the I/O number, DER is equal to "1" and the operation will not be performed. Program example X2 DIF2 WR105 = 45 FUN 12 (WR105) WR0105 = 45 FUN 12 (WR0105) Program description An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 	• The argument is given in d	egrees	in the	e 0° <u>≤</u> :	s <u>≤</u> 360°.	When	s is ec	ual to	90° or	s is ea	qual to	o 270°	, H7F	FF and HFFFF are set
Program example $X2$ DIF2 H $WR105 = 45$ $FUN 12 (WR105)$ I $WR0105 = 45$ $FUN 12 (WR105)$ I $WR0105 = 45$ $FUN 12 (WR0105)$ I	for s+2 and s+1, respective	ly. If	s fall	ls outs	ide the ran	ige, DEl	R is ec	ual to	"1" an	d the	operat	tion w	ill not	be performed.
 X2 DIF2 WR105 = 45 FUN 12 (WR105) WR0105 = 45 FUN 12 (WR105) WR0105 = 45 FUN 12 (WR0105) Program description An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 	• If s+1 and s+2 exceed the r	naxim	um va	alue fo	r the I/O n	umber,	DER	s equa	l to "1	" and	the op	peratio	n will	not be performed.
WR105 = 45 FUN 12 (WR105) LD X00002 AND DIF2 [WR0105 = 45 FUN 12 (WR0105)] Program description • An angle of 45° is set in WR0105. • TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values.	Program example													
WR105 = 45 FUN 12 (WR105) LD X00002 AND DIF2 [WR0105 = 45 FUN 12 (WR0105)] Program description • An angle of 45° is set in WR0105. • TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values.														
FUN 12 (WR105) Image: FUN 12 (WR105) Image: FUN 12 (WR105) Image: FUN 12 (WR0105) Program description Image: FUN 12 (WR0105) • An angle of 45° is set in WR0105. Image: FUN 12 (WR0105) • TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values.	1	w	P 105	= 15					LE	X00	002			
 FUN 12 (WR0105) Program description An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 					5)									
 Program description An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values.)5)		
 An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 	I					I]			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
 An angle of 45° is set in WR0105. TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values. 														
• TAN operation is performed at the leading edge of X00002, and the fractional portion of the result is set in WR0106 and the whole number portion is set in WR0107 as binary values.	. .													
whole number portion is set in WR0107 as binary values.	_			ling od	ao of V00	00 2 an	d tha f	reation	al nor	tion	fthar	ogult i	a aat i	n WP0106 and the
								action	iai poi	1011 0		csuit I	5 SCI I	
	-				-		5=H0	02D						
[] indicates the display when the LADDER EDITOR is used.	* [] indicates the display when	the T A	DDF	B EDI	TOR is no	ed								

Name	ARC SIN	functio	n												
	Ladder form	nat				Cor	ndition a	code			Proc	essin	g time	e (μs)	Remark
	FUN 13 (s	e)		F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	М	ax	
	* [ASIN (s)	/		[DER	ERR	SD	V	'	С					
		/]			\uparrow	•	٠		•	•					
C	ommand for	rmat				Num	ber of	steps			10	60	•	÷	
	FUN 13 (s	/				Conditior	۱		Steps	5					
	* [ASIN (s))]				_			3						
					Bit			W	ord	-	Dou	uble v	vord	ant	
Us	able I/O		Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argum	ient onal portion)								0						s uses up to s+2.
Argum	A 7														
s+1 (intege	er portion)								0						
Fund	ction														
	s+2							+1			S				
				1 4		г	5		0 15	raction		0 tion			
	to 90°, 180°					SIN-1	Integer	_			<u>^</u>				
			using	the u	nsigne	d binary v	value de	signat	ed by s	(fract	ional	portio	n) and	s+1 (integer portion) as the
	nt, and output ⁻¹ value is d		a : a				£ 00 4 a 0	00	1 1 0 0 0	La 270	0				
	lculation is c							0° and	1 1 80-	10 270					
	tional data is							ual va	lue by	65,535	5.				
Cautiona	ary notes														
	e argument		>1 T	DER i	s equa	il to "1" a	nd opera	tion v	vill not	be per	rform	ed			
													peration	on wil	l not be performed.
Program	example														
X3 D	IF3		_					1		IT) X00	003			
╽┝┥┝┥	<u>}</u>				H0000A (WR10)		F				VD DIF				
													00A48E		
										FC]	IN 13 (WKUU	10)		
		1													
Program o															
	in DR0010 (1.1	•. •			0.1.2			
• SIN ⁻¹ o Executio	peration is p n results: WI	ertorms R0012=	at the HOO?	e lead	ling ec R0011	lge of X00 =H0000	0003, an WR0010	d the $D = H \Lambda$	result i 48F	s set ir	n WR(J012 a	s a bii	nary v	alue.
LACCULIO		10012-	11002	0, w		110000,	1001	• 11A	TOL						

Name	ARC COS function	on												
L	_adder format				Cor	ndition o	code			Proc	essin	g time	e (μs)	Remark
	FUN 14 (s)		F	R7F4	R7F3	R7F2	R7	-1 F	R7F0	A	ve	М	ax	
	* [ACOS (s)]		[DER	ERR	SD	V		С					
	[/1005 (3)]			\uparrow	•	•	•		•					
Co	ommand format				Num	nber of s	steps			10	53	•	÷	
	FUN 14 (s)			(Conditior	า		Steps	3					
:	* [ACOS (s)]				_			3						
				Bit			W	ord		Dou	uble v	vord	ant	
Us	able I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argum								0						s uses up to s+2.
(fractio	onal portion) ent													
	r portion)							0						
Func	tion					·								·
	s+2					s	+1			S				
			1.		1	15		0 15			0			
	0° to 180°				COS-1	Integer	porti	on ^{F1}	raction	al por	tion			
argumen • The COS • If the cal	t, and outputs s+2. 3^{-1} value is describe culation is complete tional data is the val	ed in c ed nor	legre mally	es in tl y, DEF	he range o Lis equal	of 0° to 1 to "0."	180°.				portio	511) and	u 3 ' 1	(integer portion) as th
Cautiona	ry notes													
• When the	e argument s+1.s 1 and s+2 exceed th			~		-			-			peratio	on wil	l not be performed.
Program	example													
	F4			HFFFFA (WR24)	871	-			AN [DF	0 X00 ND DIF R0024 IN 14 (4 = HFF	FFA871 24)		
Program d	escription													
• COS ⁻¹ c	in DR0024 (WR002 operation is perform n results: WR0026=	s at th	le lea	ding e					is set i	n WR	0026	as a bi	inary v	value.

Name	ARC TAN function	on												
L	Ladder format				Cor	ndition o	code			Proc	essin	g time	e (μs)	Remark
	FUN 15 (s)		F	R7F4	R7F3	R7F2	R7	F1 R	R7F0	A	ve	М	ax	
	* [ATAN (s)]			DER	ERR	SD	٧	,	С					
	[AIAN (3)]			\uparrow	•	•	•	,	•					
Co	ommand format				Num	nber of s	steps			1	16	•	<u>.</u>	
	FUN 15 (s)				Conditior	۱		Steps	6					
	* [ATAN (s)]				_			3						
				Bit			W	ord		Doι	uble v	vord	ant	
Us	able I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argum								0						s uses up to s+2.
(fractio	onal portion)													
s+1 Argum (intege	r portion)							0						
Func	<u> </u>											1		<u> </u>
	s+2					S	+1			s				
			•		1	5		0 15			0			
	0 to 180°		<		TAN-1	Integer	porti	on Fr	action	al por	tion			
Calculate	es the TAN ⁻¹ value	using	the	unsign	ed binary	value de	esigna	ted by	s (frac	tional	portio	on) an	d s+1	(integer portion) as the
	it, and outputs $s+2$.													
• <u>The TAN</u> • If the cal	N ⁻¹ value is described leulation is completed	ed in o ed nor	degre mall	es in t	<u>he range (</u> is equal	<u>of 0° to 9</u> to "0 "	90° an	d 180°	to 270	<u>)°</u> .				
	tional data is the val				•		ual va	lue by	65,53	5.				
Cautiona	ary notes													
	and s+2 exceed the	maxi	mum	value	for the I/) numbe	er DF	R is ea	ual to	"1" ai	nd one	eration	will	not be performed
When 5 T		muxn	main	vuide	for the 1/	o numo	л, ве	it is eq	uur to	1 u.	ila opt	ration		not be performed.
Program	example													
X5 DI	IF5													
	<u> </u>			H00010						D X00				
	I	FU	JN 15	(WR30)					[30 = 30		000		
										JN 15 (
									1					
Program d	lescription													
• Set data	in DR0030 (WR003	30, WI	R003	1).										
	operation is perform								is set i	in WR	0032	as a bi	nary	value.
Execution	n results: WR0032=	H002	D, W	R003	I=H0001,	WR003	0=H0	000						

Ν	lame	Check code calcu	lation												
	L	adder format				Cor	ndition o	code			Proc	essin	g time	(µS)	Remark
				F	R7F4	R7F3	R7F2	R7	F1 F	R7F0		A	ve		
		FUN 22 (s)		I	DER	ERR	SD	V	,	С					
					\uparrow	•	•	•		•	1	l.6 n +	- 458.5	5	
	Co	mmand format				Num	nber of s	steps			(n	: Data	a lengt	h)	
		FUN 22 (s)			(Conditior	ו		Steps	s					
		FUN 22 (s)				—			3						
					Bit			W	ord		Dou	uble v	vord	ant	
	Usa	able I/O	Х	Y	R,	TD, SS,	WX	WY		TC	DX	DY	DR,	Constant	Other
	1				М	CU, CT			WM				DM	Ũ	
S	Starting	, I/O							0						s uses up to s+6.

Function

• This command creates check code to be attached to serial communication message frame.

• Calculation type is specified in the parameter "s".

• Byte format (high or low byte) is specified in the parameter "s+1".

 \bullet Data address and data length are specified in "s+2", "s+3" and "s+4".

• Result data address is specified in "s+5" and "s+6".

[0] Calculation type setting

Calculation type to be selected from 7 types as follwos.

Setting	Calculation typpe		Result (Check code)
H0000	$(B1) + (B2) + \dots + (Bn)$	Byte	(ex. 12)
H0001	$(B1) + (B2) + \dots + (Bn)$	Word	Normal (ex.1234)
H0002	$(B1) + (B2) + \dots + (Bn)$	Word	Byte swapped (ex.3412)
H0003	$(B1) + (B2) + \dots + (Bn)$	Word	ASCII converted, normal (ex.3132)
H0004	$(B1) + (B2) + \dots + (Bn)$	Word	ASCII converted, swapped (ex.3231)
H0005	$(W1) + (W2) + \dots + (Wn)$	Word	Normal (ex. 1234)
H0006	$(W1) + (W2) + \dots + (Wn)$	Word	Swapped (ex. 3412)
H0010	{(B1)xor(B2)}xorxor(Bn)	Byte	(ex. 12)
H0011	$\{(B1)xor(B2)\}xorxor(Bn)$	Word	ASCII converted, normal (ex. 3132)
H0012	$\{(B1)xor(B2)\}xorxor(Bn)$	Word	ASCII converted, swapped (ex.3231)
H0013	{(W1)xor(W2)}xorxor(Wn)	Word	Normal (ex. 1234)
H0014	{(W1)xor(W2)}xorxor(Wn)	Word	Swapped (ex. 3412)
Others	DATA Error (DER ON)		

Name	Check code calculation	on	
Program ex	ample		
< Sent data f	frame > Check code	e = XOR for each byte and ASCII conv	rersion
STX	Data [01010005		
(02)	(303130313030303	53030) (?) (0D)	
<sent a<="" data="" td=""><td></td><td>-</td><td></td></sent>		-	
	0 2 3 0	_	
	3 1 3 0	_	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	
	3 0 ? ?	-	
	?? 0 D	-	
< Sample pro	ogram >		
R20 DIF2	20	· · · · · · · · · · · · · · · · · · ·	
	\	WR0 = H0011 [1] WR1 = H0101 [2]	LD R020 AND DIF20
		WR2 = H000C } [3]	WR0 = H0011
		WR3 = H0000 J WR4 = 10 [4]	WR1 = H0101 WR2 = H000C
		WR5 = H000C WR6 = H0005 [5]	WR3 = H0000
		FUN 22 (WR0)	WR4 = 10 WR5 = H000C
			WR6 = H0005 FUN 22 (WR0)
]
Program des	scription		
At a rising ed	lge of R20, A check o	code is calculated and it stores in an int	ernal output (WM5, WM6).
		e, ASCII, normal) : H0011	
	ion starts from L-byt pring from L-byte : (H		
	dress : WM0 (H000C		
	gth : 10 bytes		
[5] Result a	ddress : WM5 (H000	С, Н0005)	
< Result >		_	
	0 2 3 0	30 31 30 31 30 30 30	35 30 30
	3 1 3 0		
	3 1 3 0	<u>31</u> 00	
	3 0 3 0		
	3 5 3 0		
	3 0 3 0		
WM6	3 5 0 D		
	Ť	30 35 🦾 ASCII 🔇	= 05

Ν	lame	Check code verify	ving												
	L	adder format				Cor	ndition o	code			Proc	essin	g time	(μs)	Remark
				F	R7F4	R7F3	R7F2	R7	F1 F	R7F0		A	ve		
		FUN 23 (s)		I	DER	ERR	SD	V	'	С					
					\uparrow	•	•	•	,	•	1	l.6 n +	- 474.7	7	
	Co	mmand format				Num	nber of s	steps			(n	: Data	a lengt	th)	
		FUN 23 (s)			(Conditior	۱		Steps	S					
		FUN 23 (s)				—			3						
					Bit			W	ord		Dou	uble v	vord	ant	
	Usa	able I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s	Starting	I/O				00,01			0						s uses up to s+9.

Function

• This command verifies check code attached in received message frame.

• Calculation type is specified in the parameter "s".

• Byte format (high or low byte) is specified in the parameter "s+1".

 \bullet Data address and data length are specified in "s+2", "s+3" and "s+4".

• Check code specified in "s+5" and "s+6" is compared with calculated check code, and result is stored in the address specified in "s+7".

[0] Calculation type setting :

Calculation type to be selected from 7 types as follows.

Value	Calculation type		Result (Check code)
H0000	$(B1) + (B2) + \dots + (Bn)$	Byte	(ex. 12)
H0001	$(B1) + (B2) + \dots + (Bn)$	Word	Normal (ex.1234)
H0002	$(B1) + (B2) + \dots + (Bn)$	Word	Byte swapped (ex.3412)
H0003	$(B1) + (B2) + \dots + (Bn)$	Byte	ASCII converted, normal (ex.3132)
H0004	$(B1) + (B2) + \dots + (Bn)$	Byte	ASCII converted, swapped (ex.3231)
H0005	$(W1) + (W2) + \dots + (Wn)$	Word	Normal (ex. 1234)
H0006	$(W1) + (W2) + \dots + (Wn)$	Word	Swapped (ex. 3412)
H0010	{(B1)xor(B2)} xor xor(Bn)	Byte	(ex. 12)
H0011	{(B1)xor(B2)} xor xor(Bn)	Byte	ASCII converted, normal (ex. 3132)
H0012	{(B1)xor(B2)} xor xor(Bn)	Byte	ASCII converted, swapped (ex.3231)
H0013	{(W1)xor(W2)} xor xor(Wn)	Word	Normal (ex. 1234)
H0014	{(W1)xor(W2)} xor xor(Wn)	Word	Swapped (ex. 3412)
Others	DATA Error (DER ON)	-	·

Name	Conversion f	rom 16-	bit unsi	igned b	oinary to d	lecimal	ASCI	data (1	BINA	RY TO	D DEC	CIMA	L ASC	CII)
	Ladder format				Cor	ndition	code			Proc	essin	g time	e (μs)	Remark
	FUN 30 (s)		F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	M	ax	
	* [BINDA (s)]			DER	ERR	SD	V	'	С					
	· [BINDA (S)]			\uparrow	•	٠		•	•					
	Command forma	at			Num	ber of	steps			30)9	•	÷	
	FUN 30 (s)				Conditior	۱		Steps	6					
	* [BINDA (s)]				_			3						
				Bit			W	ord		Dou	uble v	vord	ant	
	Usable I/O	X	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
	ument version data)							0						s uses up to s+3.
Function														
	16-bit unsigned binary data Decimal ASCII data													
s	0 to 65	535			⇒ s+	-1	10) ⁴		10 ³				
					sH	-2	10) ²		10 ¹				
					s⊣	-3	10) ⁰		NUL	L			
						10	n: ASC	CII code	e in th	e 10 ⁿ	place			
• The 1	6-bit unsigned bin	ary data	specif	ied by	argument	s is co	verteo	l to 5-d	ligit de	ecimal	ASC	II code	e and	the result is stored in
s + 1	to $s + 3$.													
	ing zeros of the con remaining digits aff				· ·		-		-	-			string	3
	operation is perfor		-		-	-		2,				u 01 u		2.
Coutic	non/ noton													
	onary notes				DED		((1))				c	1		
If $s + 1$	to $s + 3$ exceed the	e maxim	num I/C) numt	ber, DER 1	is set to	"1" ar	id no o	peration	on is p	erforr	ned.		
Progra	am example													
X30	DIF30	[WR0 = 3	12345						O X00				
	11		FUN 30	(WR0)					[ND DIF				
		L								R0 = 1 $JN 30 ($				
]					
Program	n description													
	binary data 12345 s					to ASC	II data							
	onversion result is ition results: WR00					=H3132	WR0	002=H	3334	WR0)03=F	13500		
			. (***				,		,					

N	lame	e Conver	sion from	32-bi	t sign	ed bin	ary to dec	imal	ASCII	data (E	OUBI	LE BIN	JARY	TO D	ECIN	IAL ASCII)
		Ladder fo	ormat				Cor	nditio	n code			Proc	essin	ng time	e (μs)	Remark
		FINI 21	(-)		F	R7F4	R7F3	R7F	2 R	7F1	R7F0	A	ve	M	ax	
		FUN 31			I	DER	ERR	SE)	V	С					
		* [DBIND	A (s)]			\uparrow	•	•		•	٠					
		Command	format				Num	nber o	of step	S		4	71	•	÷	
		FUN 31					Conditior	ו		Step	os					
		* [DBIND	A (s)]				—			3						
						Bit	1			Vord			uble \		tant	
		Usable I/O		Х	Y	R, M	TD, SS, CU, CT	W	X WY	WR, WM		DX	DY	DR, DM	Constant	Other
S		ument (lowe	· · · · · · · · · · · · · · · · · · ·							0						-2,147,483,648 to
s+1	-	ument (high	er)							0						2,147,483,647
	F١	unction														
		32-bit sign	ed binary	data					D 15	ecimal	ASCII 8 7	l data	(n		
	s	La	ower 16-bi	it] _	>_s-	+2	-	ign	0 7	109		7		
s+1 Higher 16-bit s+3 108 107																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
	$\begin{array}{c ccc} s+4 & 10^6 & 10^5 \\ s+5 & 10^4 & 10^3 \end{array}$															
	$\begin{array}{c cccc} s+5 & 10^4 & 10^3 \\ s+6 & 10^2 & 10^1 \end{array}$															
								ł		10				_		
							5-	+7			1120	NUL				
									-	Minus	H20 H2D	("-")				
									10 ⁿ : AS	CII co	de in tl	ne 10 ⁿ	place			
		-	-	-		by ar	guments s	s (low	er) and	s + 1	(highe	r) is co	onvert	ed to	10-dig	git decimal ASCII code
		e result is sto sign is a plus				20 (spa	ace), and l	oy H2	D ("-"	if it is	a minu	1S.				
• L	eadir	ng zeros of th	ne convers	sion re	sult a	re sup	pressed a	nd the	se digi	ts are r	eplace	d by H				
		maining digition of the second se			-		-		y NUI	L, whi	ch indi	icates t	he en	d of a	string	
	r the v	operation is		norm	uny, i	DERI	550110 0	•								
		onary notes														
If	s + 1	to $s + 7 \exp(\frac{1}{2})$	eed the ma	aximu	m I/C	numl	ber, DER i	is set	to "1" :	ind no	operati	ion is p	berfor	med.		
Pi	rogra	am example														
	3721	DIEAL														
		DIF31		D	R10 =	-123456	57		Ц			D X0				
	11	11		F	UN 31	(WR10))				[ND DIF $R10 =$		67		
												UN 31				
											1					
Pro	ograr	n descriptio	n													
		nary data -12						WR0	011) is	conve	rted to	ASCII	data.			
		nversion restion restion results: E						R001	2=H20	20. WI	20013=	=H202	0. WR	R0014=	=H313	32.
			VR0015=I									11202	-, ,, ,,			-,

^{* []} indicates the display when the LADDER EDITOR is used.

N	lame	Conversior	n from	16-bi	t bina	ry to ł	nexadecin	nal AS	SCII	l data	(BINA	ARY 1	TO HE	XA A	SCII)		
	L	_adder form	at				Со	nditio	n co	ode			Proc	essin	g time	(μ s)	Remark
		FUN 32 (s)		F	R7F4	R7F3	R7F	-2	R7I	-1 F	R7F0	A	ve	M	ax	
		* [BINHA (s	·			DER	ERR	SE)	V		С					
			/]			\uparrow	•	•		•		•					
	Co	ommand for	mat				Nun	nber o	of s	teps			3	11	÷	<u>,</u>	
		FUN 32 (s					Conditio	٦			Steps	6	-				
	*	* [BINHA (s])]	1			_				3					1	
						Bit					ord	1		uble v	r	tant	
	Us	able I/O		Х	Y	R, M	TD, SS, CU, CT	W	Х	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s	Argum (conver	ent rsion data)									0						s uses up to s+3
	Fund	ction															
16-bit unsigned binary data Hexadecimal ASCII data																	
	S	0 to I	HFFFF				⇒ s-	+1		16			16 ²				
							S	+2		16) ¹		16 ⁰				
							S	+3			N	ULL					
									16 ⁿ :	ASC	II code	e in th	e 16 ⁿ	place			
		-	oinary o	lata sj	pecifi	ed by	argument	s is c	onv	rted	to 4-d	igit he	xadec	imal A	ASCII	code	and the result is stored
	ins+1t	to $s + 3$. zeros of the c	onvor	ion r	agu 1t	oro no	taunnraa	had									
	-	fter ASCII da					~ ~	scu.									
• I	If the op	eration is per	formed	l norn	nally,	DER	is set to "	0."									
С	autiona	iry notes															
		s + 3 exceed	l the ma	ximu	n I/C) numł	er DER	is set	to "	1" an	d no o	neratio	on is n	erforr	ned		
						iiuiii	, DER	15 500		i un	u no o	peruiti	511 15 p	011011	iicu.		
Pr	rogram	example															
	X32 DII	F32															
		<u> </u>			R20 =				Н				D X00				
					JIN 32	(WR20)	,					[W	R0 =	1234			
									-			FL]	JN 32 (WR20)		
			Γ														
Pro	ogram d	escription															
		ry data H123 version result							SCI	I data	•						
		on results: W							002	2=H3	3334, V	VR002	23=H0	0000			

Name	Conversion from	32-bit	bina	ry to ł	exadecin	nal A	ASCI	I data	(DOU	BLE	BINAI	RY TO) HEX	XA AS	SCII)
L	adder format				Со	nditi	ion c	ode			Proc	essin	g time	(μs)	Remark
	FUN 33 (s)		F	R7F4	R7F3	R7	7F2	R7I	-1 R	7F0	A١	ve	M	ax	
	DBINHA (s)]		1	DER	ERR	S	SD	V		С					
I				\uparrow	•		•	•		•					
Co	mmand format				Nun	nber	r of s	teps			37	77	÷	<u>.</u>	
	FUN 33 (s)				Conditio	n			Steps	5					
* [[DBINHA (s)]	1			_				3					1	
				Bit					ord		Dou	uble w		tant	
Us	able I/O	Х	Y	R, M	TD, SS,	١	WX	WY	WR, WM	ТС	DX	DY	DR, DM	Constant	Other
a Argum	ent (lower)			IVI	CU, CT								DIVI	0	H00000000 to
	ent (lower)								0						HFFFFFFFF
									0						s uses up to s+6
Func		1						TT	1	1 4 04	TI 1. 4				
32.	32-bit unsigned binary data Hexadecimal ASCII data 15 8 7 0 s Lower 16-bit $5+2$ 16^7 16^6														
s Lower 16-bit \longrightarrow s+2 16^7 16^6															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
	s+1 Higher 16-bit s+3 16 ⁵ 16 ⁴ s+4 16 ³ 16 ²														
								10			16°		-		
					S	+6		. ~ ~		ULL					
									II code		-				
	oit signed binary da d the result is stored					s (lo	ower)	and s	s + 1 (h	nigher) is coi	nverte	d to a	n 8-di	git hexadecimal ASCII
	zeros of the conver fter ASCII data ind					sed.									
	eration is performe					ʻ0."									
	1														
Cautiona	-														
If $s + 1$ to s	s + 6 exceed the ma	ximu	n I/O	numt	er, DER	is se	et to '	'1" an	d no oj	peratio	on is p	erforn	ned.		
Program	example														
X33 DIF	733 N	П	230 =	H00128	94B		-11			LI	O X00	033			
				(WR30)			П			A1 [ND DIF	33			
											R0030 JN 33 (
							•]					
Program d	escription														
	ry data H001289A version result is sto						, WR	.0031) is con	vertee	to As	SCII d	ata.		
	on results: DR0030)=H00	01289)30, 1	WR00	33=H3	3132,	WR00	34=H	3839,	WR0	035=H4142,
	WR0036	=H00	00												
* [] indicates	the display when th	ne LA	DDE	R EDI	TOR is u	sed.									

Name	Conversion from	16-bit	BCI	D to de	cimal AS	CII data	(BCI	D TO E	DECIM	IAL A	SCII)			
L	adder format				Cor	ndition a	code			Proc	essin	g time	(μs)	Remark
	FUN 34 (s)		F	R7F4	R7F3	R7F2	R7	-1 F	R7F0	A	ve	M	ax	
	[BCDDA (s)]			DER	ERR	SD	V	'	С					
	[BCDDA (S)]			\uparrow	•	•	•		•					
Co	mmand format				Num	nber of s	steps			20	67	€	<u>.</u>	
	FUN 34 (s)				Conditior	1		Steps	6					
*	[BCDDA (s)]				_			3						
				Bit			W	ord	r	Dou	uble v	vord	tant	
	able I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argume (conver	ent sion data)							0						s uses up to s+3
Func	tion													
	16-bit BCD data						De	cimal A	ASCII	data				
s 10	10^3 10^2 10^1	10)0		=> s-	+1	10) ³		10 ²				
10 ⁿ	: BCD code in the 1	0 ⁿ pl	ace		S	+2	1()1		100				
					S	+3		N	ULL					
						10 ^r	n: ASC	CII cod	e in th	e 10 ^m	place			
	oit BCD data specif	ied by	argu	iment	s is conve	rted to a	4-dig	it deci	mal As	SCII c	ode ai	nd the	result	is stored in s +1 to
 NULL at 	zeros of the conver fter ASCII data indi eration is performe	icates	the e	nd of	a string.		e digi	ts are r	eplace	d by I	420 (s	pace)		
Cautional	ry notes													
	her than BCD da	ta, D	ER	is set	to "1" a	nd no o	perat	ion is	perfo	ormed	l.			
• If $s + 1$ to	s + 3 exceed the m	naxim	um I	O nur	nber, DEI	R is set to	o "1" a	and no	opera	tion is	perfo	rmed.		
Program e	example													
X34 DIF	34 			H0123 (WR30)					AN [W]	0 X00 ND DIF R0030 IN 34 (34 = H01			
Program de	escription													
• The conv	D data H0123 stored version result is stored on results: WR0030	red in	WR()031 to	o WR003	3.			VR003	33=H0	0000			

Name Convers	sion from	32-bi	t BCI) to de	ecimal AS	SCII d	lata	(DOI	JBLE I	BCD	TO DE	ECIM	AL AS	SCII)	
Ladder fo	rmat				Со	nditio	n co	ode			Proc	essin	g time	e (μs)	Remark
FUN 35	(5)		F	R7F4	R7F3	R7F	F2	R7I	-1 R	7F0	A١	ve	М	ax	
* [DBCDD			[DER	ERR	S	C	V	·	С					
[00000	A (3)]			\uparrow	•	•)	•		•					
Command	format				Nun	nber	of s	teps			38	35	÷	÷	
FUN 35	. /				Conditio	n			Steps	5					
* [DBCDD	A (s)]	1			_				3					1	
				Bit				W	ord	1	Dou	uble v	/ord	tant	
Usable I/O		Х	Y	R, M	TD, SS, CU, CT	W	X	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argument (lower	.)				0,01				0				2		s is BCD data.
s+1 Argument (higher	r)								0						s uses up to s+6
Function		1		1						1				1	1
32-bit	BCD data							Dee	cimal A	ASCII	data				
							15		8	3 7		0	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$															
s+1 10 ⁷ 10 ⁶	⁵ 10 ⁵	1	0^{4}		S	+3		10)5		104				
$S+1$ 10° 10° 10° 10° 10° 10^{n} : BCD code in the 10^{n} place $s+4$ 10^{3} 10^{2}															
					S	+5		10)1		10 ⁰		1		
					S	+6			N	ULL			1		
						l	10 ^m	: ASC	CII cod	e in th	ne 10 ^m	place	_		
 The 32-bit BCD d result is stored in Leading zeros of t NULL after ASCI If the operation is 	s +2 to s - he conver I data ind	+ 6. rsion i icates	esult the e	are sund of	ippressed a string.	and th							-	decin	nal ASCII code and the
Cautionary notes															
• If s, s +1 is other the									-						
• If $s + 1$ to $s + 6$ exe	ceed the r	naxim	um I/	O nur	nber, DEI	R is se	et to	"1"	and no	opera	tion is	perfo	rmed.		
Program example															
X35 DIF35	_			H00120 (WR40)						Aì [DI	D X00 ND DIF R0040 JN 35 (35 = H001			
Program description	ו ו														
The BCD data H0 The conversion re Execution results: [] indicates the displa	0120567 sult is sto DR0040 WR0046	red in =H00 5=H00	WR(12056 000	042 to 57, WI	o WR004 R0042=H	6. 2020,								7R004	5=H3637,

N	ame	. (Conversion	from	5-digi	it uns	igned	decimal A	SCII t	o 16-	oit bin	ary da	ta (DEC	CIMAI	L ASC	II TO	BINARY)
		Lao	dder forma	at				Cor	ndition	code)		Proc	cessin	g time	e (μs)	Remark
		FI	UN 36 (s))		F	R7F4	R7F3	R7F2	2 R	7F1	R7F) A	ve	М	ax	
			DABIN (s)			[DER	ERR	SD		V	С					
		L		, 1			\uparrow	•	•		•	•					
			mand forr						ber of	step			1	85	•	÷	
			UN 36 (s)					Conditior	۱		Ste	-					
		*[DABIN (s))]				_			3					<u> </u>	
		Lleab	ole I/O		37		Bit	TD 00		-	Nord			uble v	1	Constant	Other
		Usab	ne I/O		Х	Y	R, M	TD, SS, CU, CT	WX	W	WR WN	-	DX	DY	DR, DM	Cons	Other
s	Arg	umen	t (higher)					00,01			0						s to s + 2 will have
s+1	-		t (middle)								0						combinations of H00, H20, and H 30 to
s+1Argument (lower)OH20, and H 30 to $s+2$ Argument (lower)O s uses up to $s + 3$																	
s+2 Argument (lower) O s uses up to s + 3 Function																	
s																	
s+	-1		10 ²		10 ¹												
s+	-2		10 ⁰		H00)											
	I	10 ⁿ : A	ASCII code	in the	10 ⁿ	olace											
•	The :	5-digi	it unsigned	decim	nal AS	SCII (data si	pecified b	y argu	nents	s (up	per), s	+ 1 (m	iddle)	, and s	s + 2	(lower) is converted to
	16-bi	it bina	ary data and ati's H00 an	d the re	esult i	s stor	ed in	s + 3.									
			ation is per							as n	30(0). (L	aung-2	2010-51	ippres	seu ui	git)
0	outio	non	notes														
				ode sto	red ir	s to	s + 2 i	is other the	an H30	to H	39 (0 t	o 9). I	DER is s	et to "	'1" and	d no o	peration is performed.
I	Howe	ever, t	his does no	t apply	y to H	100 an	nd H20	O (NULL a	and spa	ce) o	f leadi	ng-zer	o-suppr	essed	digits.		r
			+3 exceed lue is 65,53											s perio	rmea.		
Pr	ogra	ım ex	ample														
	X36	DIF36															
	┨┝─	44					H3132 H3334			-			LD X0 AND DII				
					W	R52 =	H3500 (WR50))					[WR0050				
						511 501	(1100)	/					WR0051 WR0052	= H35	00		
													FUN 36]	(WR00	50)		
Pro	gran	n des	cription														
• '	The A	ASCII	[data "1," '	"2," "3	3," "4.	" "5"	store	d in WR00)50 to '	WR0)52 is	conve	ted to b	oinarv	data.		
• '	The c	conve	rsion result	is sto	red in	WRO	0053.							-		0	
	Exec	ution	results: WI	10030	-131	5∠, W	, KUUS		, wku	-22	13300	, wru	035-12	.545 (1	13039)	

	Ladder format					Cor	ndition c	ode			Proc	essin	g time	(μs)	Remark
	FUNI 27 (-)			F	R7F4	R7F3	R7F2	R7	=1 F	R7F0	A	ve	Ma	ах	
	FUN 37 (s)	1			DER	ERR	SD	V		С					
	* [DDABIN (s)]			\uparrow	•	•	•		•					
	Command forma	at				Num	nber of s	steps			24	49	€	. <u>.</u>	
	FUN 37 (s)				(Conditior	۱		Steps	S					
	* [DDABIN (s)]				_			3						
					Bit			W	ord		Dou	uble v	vord	ant	
	Usable I/O		Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Ar	gument (ASCII)								0						Sign is H20 or H2I and other digits at
~	~								~						combinations of H0
															H20, and H30 H39.
s+2 Ar	gument (ASCII)								0						s uses up to $s + 7$
s s+1 s+2	Sign 10 ⁸ 10 ⁶		10 ⁹ 10 ⁹ 10 ⁵			V	s+6 s+7			r 16-bi r 16-bi					
s+3	10 ⁴		10 ³												
s+4	10 ²		10 ¹												
s+5	10 ⁰		H00												
stor • Arg	Sign Plus : H2 Minus : H2 10 ⁿ : ASCII code in e 10-digit signed dec red in s + 7 (higher) yuments will be com wher digit's H00 and ne operation is performed data must be in	2D(" n the cimal and s binat H20 ormeo	10^{n} p ASC s + 6 tions (NUI d norr	II da (lowe of H(LL ar nally	ta spec er). 00, H2 nd spac y, DER	0, H30 to ce) are pro is set to '	H39, an ocessed a '0."	d H2I as H3() ("-")) ("0")	•					
• If th															
• If th • Sign	ionary notes														

• If s + 1 to s + 7 exceed the maximum I/O number, DER is set to "1" and no operation is performed.

N	lame	Conversio	n from	4-dig	it hex	adecir	nal ASCII	to 16-b	it bina	ary data	a (HE	XA AS	SCII T	O BI	NARY	<i>(</i>)
		Ladder form	nat				Con	dition o	code			Proc	essin	g time	e (μs)	Remark
		FUN 38 (e)		F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	Μ	ax	
		* [HABIN (·		[DER	ERR	SD	V	,	С					
			5)]			\uparrow	•	•	•)	•					
		Command for	rmat				Num	ber of s	steps			1:	54	•	÷	
		FUN 38 (·				Condition	l		Steps	6					
		* [HABIN (s)]				_			3						
						Bit	1		W	ord		Doι	uble v	vord	ant	
		Usable I/O		Х	Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY		Constant	Other
						М	CU, CT			WM				DM	0	Combination of H00,
S	Arg	ument (higher A	ASCII)							0						H20, H30 to H39 and
s+2	Arg	gument (lower A	ASCII)							0						H41 to 46 s uses up to $s + 2$
Function Hexadecimal ASCII data 16-bit binary data																
	Hexadecimal ASCII data 16-bit binary data															
s																
S-	s 16^3 16^2 $s+2$ 0 to HFFFF s+1 16^1 16^0 $s+2$ 0 to HFFFF															
		16 ⁿ : ASCII cod	le in the	e 16 ⁿ j	place											
•	The 4	4-digit hexadec	imal AS	SCII d	ata sp	oecifie	d by argur	nents s	and s	+ 1 is c	conver	ted to	binar	y data	and tl	ne result is stored in
	s+2 High	2. er digit's H00 a	and H2() (NI I	II ar	nd sna	ce) are pro	ressed	as H3() ("በ")	(Lea	dina_7	ero-si	innres	sed di	git)
•	Argu	ments will be c	ombina	tions	of H3	0 to F	139 and H	41 to H4					c10-3t	ippies	seu ui	Ent)
•	If the	e operation is pe	erforme	d nor	mally	, DER	is set to "	0."								
С	autic	onary notes														
																DER is set to "1" and no
	-	\cdot 1 to s + 2 exce								-		-			-	o-suppressed digits.
							,				1		1			
Pi	rogra	am example														
	X38	DIF38														
		4				H3132		_				D X00				
	•••					H4142 (WR70))				[R0070 =		2		
											W	R0071 = JN 38 (V	= H4142	2		
]	,		,		
		1														
Pro	ogran	n description														
		ASCII data "1,"					WR0070,	WR007	'1 is c	onverte	ed to b	oinary	data.			
		conversion resu sution results: W					/1=H4142.	, WR00	72=H	12AB						
″ [] I	ndica	tes the display	wnen th	ne LA	DDE	k edi	TOK IS US	sea.								

Ν	lame	Conversion of 8-c	ligit l	nexad	ecima	l ASCII to	32-bit	binary	data (1	DOUE	BLE H	EXA	ASCI	I TO I	BINARY)
		Ladder format	-			Cor	ndition (code			Proc	essin	ig time	e (μs)	Remark
		EUN(20)		F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	Μ	ax	
		FUN 39 (s) * [DHABIN (s)]			DER	ERR	SD	V	/	С					
					\uparrow	•	•		•	•					
		Command format				Num	nber of	steps			2.	30	•	÷	
		FUN 39 (s)				Conditior	า		Steps	S					
		* [DHABIN (s)]				_			3						
				1	Bit			W	'ord		Dou	uble v	word	tant	
		Usable I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s	Arg	gument (ASCII data)							0						Combination of H00, H20, H30 to H39 and
~		~					_		~						H41 to 45
s+5		ument (ASCII data)							0						s uses up to $s + 5$
	F	unction													
		Hexadecimal ASCII	data					32-	bit bina	ary dat	ta				
		15 8 7	4.66	()] _										
s 16^7 16^6 \longrightarrow s+4 Lower 16-bit															
s+1 16 ⁵ 16 ⁴ s+5 Higher 16-bit															
s+2 16 ³ 16 ²															
S	+3	161	16 ⁰)											
		16 ⁿ : ASCII code in the	16 ⁿ j	place											
		8-digit hexadecimal AS	SCII d	lata sp	pecifie	d by argu	ments s	to s +	3 is co	onverte	ed to b	inary	data a	nd the	e result is stored in
		and s + 3. her digit's H00 and H20) (NU	LLar	nd sna	ce) are pro	ocessed	as H3	0 (''0'')	(Lea	ding-z	ero-si	innres	sed di	git)
•	The a	argument will be a com	binat	ion o	f H30	to H30 an	d H41 t							sea a	5)
•	If the	e operation is performe	d nor	mally	, DER	is set to "	ʻ0."								
С	autic	onary notes													
٠															o F), DER is set to "1"
	and a digit		ned. I	Howe	ver, tł	nis does n	ot apply	to H	00 and	H20	(NUL	L and	space	e) of le	eading-zero-suppressed
	-	-1 to s + 5 exceed the r	naxin	num I	/O nu	mber, DEl	R is set	to "1"	and no	o opera	ation is	s perf	ormed		
P	rogra	am example													
	X39	DIF39	w	/D 00 -	H4645			I		LI	O X00)039			
			W	/R81 =	H4443 H4241		F	ĺ		Al [ND DIF	39			
			W	/R83 =	H3938	\ \					R0080 = R0081 =				
			Г	010 39	(WR80))					R0082 = R0083 =				
										FU]	JN 39 (V	WR008	0)		
Pro	ograr	n description													
	The	ASCII data "F," "E," "I	יי יי ר	_ " "F	۸ " ۲۰	" "Q " "Q	" stored	in WI	20080	to WP	0083	is con	verted	to hi	narv data
•	The	conversion result is sto	red in	wR(0084 a	nd WR00	85.								
	Exec	cution results: WR0080	=H46	045, V	V K U U 8	s1=H4443	, wR00	82=H	4241, \	w K00	83=H3	938,	DK00	84=H	FEDCBA98

Name Conversion from 4-digit decimal ASCII to 16-bit BCD data (DECIMAL ASCII TO BCD) Ladder format Condition code Processing time (μs) Rem R7F4 R7F3 R7F2 R7F1 R7F0 Ave Max	
R7F4 R7F3 R7F2 R7F1 R7F0 Ave Max	ork
	Iark
FUN 40 (s) DER ERR SD V C	
* [DABCD (s)]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
FUN 40 (s) Condition Steps	
* [DABCD (s)]3	
Bit Word Double word 물	
Usable I/O X Y R, TD, SS, WX WY WR, TC DX DY DR, E	ner
s Argument (ASCII data) O Combination H20 and H	
s+1 Argument (ASCII data) O Integration in the set of	
Function	
Decimal ASCII data 16-bit unsigned BCD data	
s 10^3 10^2 $rac{10^3}{10^2}$ 10^1 10^0	
s+1 10^1 10^0 10^n : BCD code in the 10 ⁿ place	
10 ^m : ASCII code in the 10 ^m place	
• The 4-digit decimal ASCII data specified by arguments s to s + 1 is converted to 16-bit BCD data and the result is sto s + 2.	ored in
• Higher digit's H00 and H20 (NULL and space) are processed as H30 ("0"). (Leading-zero-suppressed digit)	
 Arguments will be combinations of H30 to H39 (0 to 9). If the operation is performed normally, DER is set to "0". 	
Cautionary notes	
 If the 4-digit ASCII code stored in s to s + 1 is other than H30 to H39 (0 to 9), DER is set to "1" and no operation is However, this does not apply to H00 and H20 (NULL and space) of leading-zero-suppressed digits. 	performed.
• If $s + 1$ to $s + 2$ exceed the maximum I/O number, DER is set to "1" and no operation is performed.	
Program example	
R40 DIF40	
WR90 = H2020 LD R0040 WR91 = H3031 AND DIF40	
FUN 40 (WR90)	
WR91 = H3031 FUN 40 (WR90)	
Program description	
 The ASCII data " □ " " □ " "0," "1," stored in WR0090 and WR0091 is converted to 16-bit BCD data. The conversion result is stored in WR0092. (" □ "=H20) 	
Execution results: WR0090=H2020, WR0091=H3031, WR0092=H0001	

N	lame	Conversion fro	om 8	8-digi	it dec	imal A	ASCII to 3	32-bit	t BC	D da	ta (DO	UBLE	E DEC	IMAL	L ASC	II TO	BCD)
		Ladder format					Со	nditio	on c	ode			Proc	essin	g time	e (μs)	Remark
		ELIN 41 (a)			F	R7F4	R7F3	R7	F2	R7	F1 F	R7F0	A	ve	М	ax	
		FUN 41 (s) * [DDABCD (s)]				DER	ERR	SI	D	V	,	С					
						\uparrow	•	•		•		•					
		Command format					Nun	nber	of s	steps			23	32	÷	÷	
		FUN 41 (s)					Conditio	n			Steps	S					
	:	* [DDABCD (s)]					_				3					I	
						Bit				W	ord	-	Doι	uble v	vord	tant	
	ι	Jsable I/O		Х	Y	R, M	TD, SS,	W	VХ	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s	Arou	ment (ASCII data)				IVI	CU, CT	_			W MI				DIVI		Combination of H00,
\$ ~	Aigu										~						H20 and H30 to H39
s+3	Argu	ment (ASCII data)									0						s uses up to $s + 5$
	Fu	nction															
	Decimal ASCII data 32-bit BCD data																
s 10^7 10^6 \longrightarrow s+4 10^3 10^2 10^1 10^0																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
s	+2	10 ³		10	2			1	0 ⁿ : I	BCD	code ii	n the 1	0 ⁿ pla	ce			
s	;+3	10 ¹		10)												
		10 ^m : ASCII code ii	n the	e 10 ^m	plac	e											
•					pecif	ied by	argument	ts s to) s +	1 is	conver	ted to	32-bit	BCD	data a	and the	e result is stored in
		(lower), s + 5 (high r digit's H00 and H			[]aı	nd sna	ce) are pro	ocess	ed a	s H3() ("በ")	(Lea	ding_7	ero-su	innres	sed di	git)
•	Argun	nents will be comb	inat	ions	of H3	30 to F	139 (0 to 9	9).	cu a	.5 115	,(0)	. (Lea	ung-z	010-30	ippies	seu ui	gn)
•	If the	operation is perfor	med	l nori	nally	, DER	is set to '	ʻ0."									
С	autio	nary notes															
																	operation is performed.
		ever, this does not a $1 \text{ to s} + 5 \text{ exceed the third s}$		-					-			-	~ ~		-		
	11.5 ·		ie ii		ium	, O 110				.0 1	unum	o open	ution i	5 peri	onnea	•	
Pi	rograr	m example															
	R41]	DIF41															
	┥┝──	4				H3938			Ч				D R00 ND DIF				
				W	RA2 =	= H3736 = H3534						[R00A0		8		
						= H3332 (WRA0						W	R00A1 R00A2	= H373	6		
									- 1			W	R00A3 JN 41 (V	= H333	2		
]			,		
D		deparietier															
Pro	gram	description															
		SCII data "9," "8,"							1 in	WR0	OA0 to	WR0	0A3 is	s conv	erted t	to 32-1	bit BCD data.
		onversion result is ition results: WR00							R00)A2=]	13534	, WR0	0A3=]	H3332	2, DR()0A4=	H98765432

- The number of hexadecimal data characters specified by argument s is converted to hexadecimal ASCII codes beginning from the head I/O specified by argument s + 1, and the results are stored in addresses beginning from the head I/O specified by s + 2.
- If the number of characters is odd, the lower 8 bits of the data at the output destination will be H20 (space).
- Use the ADRIO command to set the actual addresses in the head I/Os of s + 1 and s + 2.
- If the operation is performed normally, DER is set to "0."

Cautionary notes

• The ADRIO command should be used to set the actual addresses in s + 1 and s + 2. If not, DER is set to "1" and no operation is performed.

- If s to s + 2 and the areas specified by them overlap, DER is set to "1" and no operation is performed.
- If s to s + 2 and the areas specified by s + 1 and s + 2 exceed the maximum I/O number, DER is set to "1" and no operation is performed.

	Ladder format				Cor	ndition a	code			Proc	essin	g time	(μs)	Remark
			F	R7F4	R7F3	R7F2	R7	F1 F	R7F0		A	ve		
	FUN 43 (s)		I	DER	ERR	SD	\	/	С					
	* [HEX (s)]			\uparrow	•	•			•	2	1.1 n	+ 271.	8	
	Command format				Num	nber of a	steps			(n :	Numl	ber of		
	FUN 43 (s)				Conditior	า		Steps	6		cor	iversic	on)	
	* [HEX (s)]				_			3						
				Bit			N	/ord		Dou	uble v	vord	ant	
	Usable I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
	o. of converted aracters							0						s uses up to s+2
+1 AS	CII head I/O No.							0						Actual address is s
	nary conversion data ad I/O No.							0						Actual address is s
s+1 s+2	ASCII data head a1 Binary data head a2						d dn d: 12 d1	3 2 n Binary	 ↓	4 3	0 0 0 d4	<i>y</i>		
								1 -				\$		
						d	n-2	dn-1	dn	1	H0			

- The number of hexadecimal ASCII code characters specified by argument s is converted to binary data beginning from the head of the hexadecimal ASCII code specified by argument s + 1, and the results are stored in addresses beginning from the head I/O specified by s + 2.
- If the number of characters is odd, the lower 4 bits of the data at the output destination will be "0."
- Use the ADRIO command to store the actual addresses of the head I/Os at s + 1 and s + 2.
- Higher digit's H00 and H20 (NULL and space) are processed as H30 ("0"). (Leading-zero-suppressed digit)
- If the operation is performed normally, DER is set to "0."

Cautionary notes

- The ADRIO command should be used to set the actual addresses in s + 1 and s + 2. If not, DER is set to "1" and no operation is performed.
- If s to s + 2 and the areas specified by them overlap, DER is set to "1" and no operation is performed.
- If s to s + 2 and the areas specified by s + 1 and s + 2 exceed the maximum I/O number, DER is set to "1" and no operation is performed.

Name Conversion from	n hexadecimal ASCII to hexade	cimal binary data (ASCII TO BINARY)
Program example	WM0 = H3031 WM1 = H3233 WM2 = H3435 WM3 = H3637 WM4 = H3839 WM5 = H4142 WM6 = H4344 WM7 = H4546 WR0 = 15 ADRIO (WR1, WM0) ADRIO (WR2, WR100) FUN 43 (WR0)	LD R7E3 [WM000 = H3031 WM001 = H3233 WM002 = H3435 WM003 = H3637 WM005 = H4142 WM006 = H4344 WM007 = H4546] LD R0043 AND DIF43 [WR0000 = 15 ADRIO (WR0001, WM000) ADRIO (WR0002, WR0100) FUN 43 (WR0000)]
Program description		
2) At a rising edge of X00 stored from WM0100. Execution results: WM000 WM002 WM004	043, the hexadecimal ASCII d	 pecial internal output R7E3 (single scan ON after RUN start). ata is converted to hexadecimal binary data, and the converted data is WR0100=H0123 WR0101=H4567 WR0102=H89AB WR0103=HCDE0

Name	Merge strin	gs
performIf s to s	PRIO comman ed. + 2 and the an + 2 and the a	nd should be used to set the actual addresses in s to $s + 2$. If not, DER is set to "1" and no operation is reas specified by them overlap, DER is set to "1" and no operation is performed. The reas specified by $s + 1$ and $s + 2$ exceed the maximum I/O number, DER is set to "1" and no operation is
Program	example	
R7E3	544 N	WM10 = H4849 LD R7E3 WM11 = H5441 WM010 = H4849 WM12 = H4348 WM010 = H4849 WM13 = H4900 WM011 = H5441 WM20 = H4E48 WM012 = H4348 WM21 = H534E WM012 = H4348 WM22 = H5249 WM021 = H534E WM24 = H0000 WM021 = H534E WM024 = H533 WM021 = H534E WM024 = H0000 J LD R044 AND DIF44 ADRIO (WR2, WM30) I FUN 44 (WR0) ADRIO (WR000, WM010) ADRIO (WR000) J J J
Program d	escription	
(single 2) At a ri	e scan ON aft ising edge of results: WM WM	ter string from WM010 and the second character string from WM020 using special internal output R7E3 are RUN start). R044, character strings are merged and output to WM030 and succeeding areas. M10=H4849 WM020=H4E48 WM030=H4849 M011=H5441 WM021=H534E WM031=H5441 M012=H4348 + WM022=H5249 WM032=H4348 M013=H4900 WM023=H4E53 WM033=H494E WM034=H4853 WM035=H4E52 WM036=H494E WM037=H5300

- The character strings to be compared end before a NULL (H00).
- The numbers of characters in the strings are compared first. If the numbers do not match, bit 2 is set to "1." If the numbers of characters match, the strings themselves are compared. If they do not match, bit 1 is set to "1." If both the numbers of characters and strings match, bit 0 is set to "1."
- Use the ADRIO command to set the actual addresses in the head I/Os of s and s + 1.
- If the operation is performed normally, DER is set to "0."

Cautionary notes

- The ADRIO command should be used to set the actual addresses in s and s + 1. If not, DER is set to "1" and no operation is performed.
- If s to s + 2 and the areas specified by them overlap, DER is set to "1" and no operation is performed.
- If s to s + 2 and the areas specified by s and s + 1 exceed the maximum I/O number, DER is set to "1" and no operation is performed.

Name	Compare char	acter strings	
	F45	WM0 = H3031 WM1 = H3233 WM2 = H3435 WM3 = H3600 ADRIO (WM20, WM0) ADRIO (WM21, WM10) FUN 45 (WM20) Y100 = M220 Y101 = M221 Y102 = M222	LD R7E3 [WM000 = H3031 WM001 = H3233 WM002 = H3435 WM003 = H3600] LD R0045 AND DIF45 [ADRIO (WM020, WM000) ADRIO (WM021, WM010) FUN 45 (WM020) Y00100 = M0220 Y00101 = M0221 Y00102 = M02222]
Program of 1) The of start)	ompared data is	stored in WM000 and succeeding areas	by special internal output R7E3 (single scan ON after RUN

At a rising edge of R100, the data beginning from WM000 and the data beginning from WM010 are compared.
 Depending on the comparison result, Y00000 to Y00002 turn on.

Ladder format				Con	dition c	ode			Proc	essin	g time	(μs)	Remark
FUN 46 (s)		F	R7F4 R7F3 R7F2			R7	F1 F	R7F0		Ave			
* [WTOB (s)]			DER	ERR	SD	V	/	С					
			\uparrow	•	•	•)	•	4	4.6 n -	+ 248.0	5	
Command format					ber of s	steps			(n	: Nun	nber of	f	
FUN 46 (s)				Condition	1		Steps	S	с	onver	ted by	tes)	
* [WTOB (s)]	1			_			3						
			Bit				ord	-	-	uble v		stant	Others
Usable I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
Word data head I/O No.							0						Actual addresses set in s and $s + 1$
Byte conversion data head I/O No.							0						s uses up to $s + 2$
2 No. of converted bytes							0						
Function													
	LO Na	- 1	1										
s Word-unit data head I/O No. a1 s+1 Converted byte-unit data head I/O No. a2													
			0 NO.	a2 -									
s+2 No. of converted byte	es n						· ·	. 1 .					· · · ·
						wc 15	ord uni 8 7		0	↓ ↓	15	-	init data 3 7 0
					▼ a1	1	1	d2		a2		H00	d1
										L	┙┝	H00	
							n	dn+1	ſ			H00	d3 spin
												1100	n n
											Ē	H00	dn
• The word character string	data	չք քե	o hoo-	11/0 amos	ified here	0.000	mont -	i di	ided	into 1			
specified by argument s + 2Use the ADRIO command	2, and to set t	he re he ac	esult is ctual a	s stored in ddresses in	the head	d I/Ō a	area sp	ecified	l by s		iyte ur	ints ito	a the number of by
• The higher byte of the divi					0."								
• If the operation is performe	cu nom												

If s to s + 2 and the areas specified by them overlap, DER is set to "1" and no operation is performed.
If s to s + 2 and the areas specified by s and s + 1 exceed the maximum I/O number, DER is set to "1" and no operation is performed.

Ladder format			Condition code						Processing time (μ s)			Remark		
FUN 47 (s)		F	R7F4 R7F3 R7F2			R7	R7F1 R7F0		Ave					
* [BTOW (s)]			DER	ERR	SD	V	'	С						
· [BIOW (S)]			\uparrow	•	٠	•)	•	3	8.5 n +	- 252.5	5		
Command format				Num	ber of s	steps			(n	: Nun	nber of	f		
FUN 47 (s)				Conditior	۱		Steps	S	c	onver	ted by	tes)		
* [BTOW (s)]	,			_			3					1		
			Bit			W	ord		Dou	uble v	vord	tant		
Usable I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other	
Byte-unit data head I/O No.							0						Actual addresses set in s and s + 1	
Word-unit data head I/O No.							0						s uses up to $s + 2$	
2 No. of converted bytes							0							
s+1 Converted word-unit of s+2 No. of converted bytes		ead I	/O No.	. a2		Ву	te unit	data				W	ord unit data	
					★	15	8 7		0	Ξ.	▼	15	8 7 0	
					a1			d1	'	[a2		d1 d2	
								d2		- SD			d3 d4	
					4	2			\sim	n words		1		
								dn-1	'	= 		d	ln-2 dn-1	
								dn	,	V			d n H00	
		nto w							ecified 1 by s ·		rgume	nt s fe	or the number of	bv'

• The ADRIO command should be used to set the actual addresses in s and s + 1. If not, DER is set to "1" and no operation is performed.

If s to s + 2 and the areas specified by them overlap, DER is set to "1" and no operation is performed.
If s to s + 2 and the areas specified by s to s + 2 exceed the maximum I/O number, DER is set to "1" and no operation is performed.

- An H00 is inserted in an area that became empty after the shift. Note that the data after the specified number of bytes is lost by the shift operation.
- Use the ADRIO command to set the actual addresses in the head I/Os of s + 1.
- If the operation is performed normally, DER is set to "0."

Cautionary notes

- The ADRIO command should be used to set the actual addresses in s + 1. If not, DER is set to "1" and no operation is performed.
- If s and s + 1 and the areas specified by them overlap, DER is set to "1" and no operation is performed.
- If s + 1 and the areas specified by s and s + 1 exceed the maximum I/O number, DER is set to "1" and no operation is performed.

Name	Byte right	shift					
Program e	example						
	48 <u>N</u>		WR100 = 4 ADRIO (WR FUN 48 (WR WM100 = WN				LD R0048 AND DIF48 [WR0100 = 4 ADRIO (WR0101, WM100) FUN 48 (WR0100) WM100 = WM100 OR H0200]
Program de	escription						
Four bytes the head of Execution	f this data.	sion data i	s stored in	WM100 and	succeeding	g areas. Co	mmunication control code H02 (STX) is added to
WM100	" T "	" E "		WM100	H02	" T "	
WM101	" X "	" T "		WM101	"Е"	" X "	
WM102	H00	H00		WM102	" T "	H00	
			I				

• The data given by the number of bytes specified by argument s is shifted one byte to the left, beginning from the head specified by argument s + 1.

- An H00 is inserted in an area that became empty after the shift. Note that the head data is lost by the shift operation.
- \bullet Use the ADRIO command to set the actual addresses in the head I/Os of s + 1.
- If the operation is performed normally, DER is set to "0".

Cautionary notes

- The ADRIO command should be used to set the actual addresses in s + 1. If not, DER is set to "1" and no operation is performed.
- If s and s + 1 and the areas specified by them overlap, DER is set to "1" and no operation is performed.
- If s + 1 and the areas specified by s and s + 1 exceed the maximum I/O number, DER is set to "1" and no operation is performed.

Name	Byte left sl	hift					
Program e	example						
R49 DIF4	19		WR100 = 5 ADRIO (WR1 FUN 49 (WR				LD R0049 AND DIF49 [WR0100 = 5 ADRIO (WR0101, WM100) FUN 49 (WR0100)]
Program de	escription						
	a data strin				and succee	eding areas.	. The control code is deleted from this data so that
WM100	H02	" T "		WM100	" T "	" E "	
WM101	" E "	" X "	\Box	WM101	" X "	" T "	
WM102	" T "			WM102	H00		
			I				

■ Floating-point operation (FUN100 to FUN118) cautionary notes

The following describes some points of caution related to all the FUN commands (FUN100 to FUN 118) for performing floating-point operation. Data for the floating-point commands uses single-precision floating points conforming to IEEE754. The internal representation of IEEE754's single-precision floating-point numbers is explained below.

• Internal representation format of floating point

Single-precision floating-point numbers are expressed as 32-bit data in the following format.

Contents	Sign bit (S)	Ex	ponent part (E)		Mantissa part (M)	
Bit number	b ₃₁	b ₃₀	b ₂₃	b ₂₂		b_0

(1) Sign Bit

Sign bit (S)	Contents
0	Real number
1	Negative number

(2) Exponent Part

Exponent part (E)	Two's exponential value (E')
FF	Indicates overflow value.
FE	127
↓	↓
80	1
7F	0
7E	-1
↓	↓
01	-126
00	Treated as 0.

(3) Mantissa Part

Mantissa part (M)	The value of mantissa part (M')
7FFFFF	$(1.11 \cdots 11)_2$
7FFFFE	$(1.11 \cdots 10)_2$
↓	$\mathbf{+}$
1	$(1.00 \cdots 01)_2$
0	$(1.00 \cdots 00)_2$

1 in the integer portion of M' in the above table does not appear in the format.

(4) Mathematical Expression

The floating-point number (F) can be expressed with the following formula using the sign bit (S), exponent part

(E), and mantissa part (M) listed above.

$$(F) = (-1)^{S} \times (1 + M \times 2^{-23}) \times 2^{E-7FH} = (-1)^{S} \times M' \times 2^{E}$$

• Range that can be expressed by floating-point numbers

Hexadecimal Ex	pression	Floating Point	Remark								
Higher word	Lower word	Expression	Kenlark								
H7F7F	HFFFF	$+3.402823 \cdots \times 10^{38}$	Maximum value								
H0080	H0000	$+1.175494 \dots \times 10^{-38}$	The minimum absolute value of a positive number								
	k l	↓	The value in this range is treated as 0								
H8080	H0000	$-1.175494 \dots \times 10^{-38}$	The minimum absolute value of a negative number								
HFF7F	HFFF	$-3.402823 \cdots \times 10^{38}$	Minimum value								

• Example of setting in interval outputs

Internal output		Sign	Exponent	Mantissa	Floating point
Higher word	Lower word	bit	part	part	• ·
H3F80	H0000	0	7F	0	$(1.00 \cdots 00)_2 \times 2^{7\text{FH-7FH}} = 1.0$
H4128	H0000	0	82	28	$(1.0101000 \cdots 0)_2 \times 2^{82\text{H-7FH}} = 10.5$
HBF00	H0000	1	7E	0	$(-1) \times (1.00 \cdots 00)_2 \times 2^{7\text{EH-7FH}} = -0.5$
H3F00	H0000	0	7E	0	$(1.00 \cdots 00)_2 \times 2^{7\text{EH-7FH}} = 0.5$

Name Floating Point O	peration	(Real to l	integer (W	/ord) Co	nvers	ion)						
Ladder format			Cor	ndition c	ode			Proc	essin	g time	(μs)	Remark
		R7F4	R7F3	R7F2	R7I	=1 F	R7F0	A	ve	M	ax	
FUN 100 (s)		DER	ERR	SD	V		С					•
* [INTW (s)]		\uparrow	•	•	•		•					
Command format			Num	nber of s	steps			8	0	<	÷	
FUN 100 (s)		(Conditior	۱		Steps	s					
* [INTW (s)]				3								
		Bit			Word				uble v	vord	ant	
Usable I/O	Y R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other	
s Argument						0						s uses up to s+2.
Function												
s+2			s+1			s						
15 0		15		0 1	5			0				
Integer portion	INTW	Real n	umber po	rtion	Real	numbe	er porti	on				
 Converts the real number sp If the calculation is comple The floating point format complete 	ted norn	nally, DEF	R is equal		nteger	word	data, t	hen se	ets the	result	in s+	2.
Cautionary notes												
 When the resulting integer -32,768 to 32,767, DER is If s to s+2 exceeds the max 	set to "	1" and s+2	2 does not	change.								
Program example												
		00 = H46FF 100 (WR10					AN [DF) R01 ND DIF R0100 = IN 100 (0 H46FF			
Program description												
At a rising edge of R0100, th set in WR0102. Internal output setting : WF		H46FF, V) (WR	0100,	WR01	01) is	conv	erted t	o an i	nteger and the result is

Name Floating Po	oint Op	eratio	n (Re	eal to I	nteger (D	ouble W	/ord)	Conver	rsion)					
Ladder forma	at				Cor	ndition a	code			Proc	essin	g time	e (μ s)	Remark
ELIN 101 (c	.)		F	R7F4	R7F3	R7F2	R7	=1 F	R7F0	A	ve	М	ax	
FUN 101 (s * [INTD (s)	·		[DER	ERR	SD	V	'	С					
· [INTD (S)]			\uparrow	•	•	•		•					
Command form	mat				Num	nber of s	steps	eps			96		<u>,</u>	
FUN 101 (s	5)			(Conditior	า		Steps	5					
* [INTD (s)	* [INTD (s)]							3						
							W	ord		Dou	uble v	vord	ant	
Usable I/O	Usable I/O X					WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argument				М	CU, CT			0				DM		s uses up to s+3.
Function								<u> </u>						s uses up to 3+5.
s+3			s+2						s+	-1				S
	0 15				0			15	5	-	0	15		0
Integer portion		Integ	er po	rtion		IN	TD	Real	l numb	er por	tion	Rea	al nun	iber portion
 Converts the real num If the calculation is co The floating point for 	mplete	ed nor	mally	y, DEF	t is equal		louble	word	data, t	hen se	ets the	result	in s+	2 and s+3.
Cautionary notes														
 When the resulting int -2,147,483,648 to 2,14 If s to s+3 exceeds the 	47,483	,647, 1	DER	is set	to "1, " ar	nd s+2 an	nd s+3	do no	t chan	ge.				
Program example														
				H4EFF					[DF	0 R01 ND DIF R0100 = JN 101 (1 H4EFI			
Program description														
At a rising edge of R01 set in DR0102 (WR010 Internal output setting : Operation result :	2, WR WI	.0103) R0101	= H4	4EFF,	ecified in WR0100 WR0102	= HFFF	F	0100,	WR01	01) is	conv	erted t	o an i	nteger and the result is

Name Floating Point C	Point Operation (Integer (Word) to Real Number Conversion)												
Ladder format				Cor	ndition o	ode			Proc	essin	g time	e (μs)	Remark
$\mathbf{EUN}(102)$		F	R7F4	R7F3	R7F2	R7		R7F0	A	ve	М	ax	
FUN 102 (s)		[DER	ERR	SD	V		С					
* [FLOAT (s)]			\uparrow	•	•	•		•					
Command format				Num	nber of s	steps			73 €			÷	
FUN 102 (s)			(Conditior	۱		Steps	6					
* [FLOAT (s)]	* [FLOAT (s)]						3						
						W	ord		Dou	uble v	vord	ant	
Usable I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argument							0						s uses up to s+2.
Function													
s+2		s+1							S				
15 0 15				0			15			0			
Real number portion	Real nu	mber	portic	n Ç	FI	.OAT	1	Integer	· porti	on			
 Converts the integer word If the calculation is completed on the floating point format of the floating point floating point format of the floating point floati	eted nor	mally	y, DEF	t is equal		result	in s+1	and s	+2.				
Cautionary notes													
 An integer value in the ran If s to s+2 exceeds the max 									io ope	ration	is per	forme	ed.
Program example													
			= H7FFI 2 (WR10						D R01 ND DIF				
									R0100 = JN 102 (
Program description													
1 0	VR0100) = H	7FFF	fied in W WR0101			verted	to a	real n	umbe	r and	the re	esult is set in DR0101

Name	Floating Po	oint Op	nt Operation (Integer (Word) to Real Number Conversion)												
	Ladder form	at				Cor	ndition a	code			Proc	essin	g time	e (μs)	Remark
	EUN 102 (/	-)		F	7F4	R7F3	R7F2	R7	F1	R7F0	A	ve	М	ax	
	FUN 103 (s	·		0	DER	ERR	SD	V	,	С					
	· [FLOAID (:	s)]			\uparrow	•	•	•)	٠					
	Command for	mat				Num	nber of	steps			83		÷		
	FUN 103 (s	s)			(Conditior	۱	Steps							
	* [FLOATD (_			3								
								W	ord		Dou	uble v	vord	ant	
	Jsable I/O		х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM		DX	DY	DR, DM	Constant	Other
s Argu	iment								0						s uses up to s+3.
Fu	nction														
	s+3			s+2							s+1				S
15		0 15						0.47	15				0 15		0
	number portion				portio	`		LOAT			ger po			Int	eger portion
• If the	erts the integer of calculation is co oating point for	omplete	ed nor	mally	, DEF	t is equal		er, the	en sets	s the re	sult s+	-2 and	s+3.		
Cautio	nary notes														
	eger value in th s+3 exceeds the												is per	forme	ed.
Progra	m example														
		1													
R103	DIF3				H0002 (WR10					LI Al	D R01 ND DIF				
				105	(wikit	,0)					R0100 =				
										FU]	JN 103 ((WR01	00)		
Program	description														
At a ris	ing edge of R01	103. th	e inte	ger si	oecifie	d in DR0)100 (W	R0100), WR	.0101)	is con	verted	l to a i	real m	umber and the result is
set in D	R0102 (WR010 output setting:	2, WR	0103)							,					
	output setting: on result:					WR0100 WR0102									

Name Floating Point O	peratio	on (Ac	ditior	ı)									
Ladder format				Co	ndition	code			Proc	essin	g time	(μ s)	Remark
FUN 104 (s)		F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	Av	ve	M	ax	
* [FADD (s)]		[DER	ERR	SD	V	'	С	-				
			\uparrow	•	•		• •						
Command format					nber of	steps			126		÷		
FUN 104 (s)			(Conditio	n		Steps	S					
* [FADD (s)]	* [FADD (s)]						3					1	
		r	Bit			-	ord	1	Doι	uble v	vord	tant	
Usable I/O	Х	Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other
s Argument			М	CU, CT			WM O				DM	0	a used up to a 5
s Argument							0						s uses up to s+5.
					s+1		c			s+3	2		s+2
15 0 15 ()			15	5+1	0 15	S	0	15	512		15	0
Real number Real numbe	r _		FAD	R	eal num		Real nu						
portion portion FADD portion portion + portion portion													
Adds the real number (s+2,If the calculation is comple						en sets	s the re	sult in	(s+4,	s+5).			
• The floating point format c					10 0.								
• When the operation result i	s not v	vithin	tha ra	nge of 1	e+37 to	10+37		is set	to "1 '	,			
• If s to s+5 exceeds the max											is per	forme	d.
Program example													
R104 DIF4	D	R100 =	H42C9	0000				LI					
	D	R102 =	H4348 (WR10	8000				A) [ND DIF	4			
	1	011101	(******						R0100 = R0102 =				
1						•		FL]	JN 104 (WR010)0)		
Program description													
At a rising edge of R0104, t	ha raa	1 111100	har ar	parified :	n DP01/)0 <i>(</i> W	D 0100	WDC	101)	in add	ad to	tha ra	al number specified in
DR0102 (WR0102, WR0103), and	the re	sult is	set in DI	R0104 (N	VR01				15 auu		the re	ai number specified in
				VR0100 = /R0102 =									
				/R0102 =									

Name	Floating Point Op	eratio	n (Su	lbtract	ion)										
	Ladder format				Co	onditic	on c	ode			Proc	essin	g time	(μs)	Remark
	FUN 105 (s)		F	R7F4	R7F3	R7	'F2	R7	=1 F	R7F0	A	ve	M	ax	
			[DER	ERR	SI	D	V	,	С					
	* [FSUB (s)]			\uparrow	٠			•		•					
С	ommand format				Nu	mber	of s	teps			126		÷		
	FUN 105 (s)			(Conditic			Steps	S						
	* [FSUB (s)]				_			3							
				Bit				W	ord		Dou	uble v	vord	ant	
U	sable I/O	Х	Y	R,	TD, SS		VX	WY	WR,	TC	DX	DY	-	Constant	Other
				М	CU, CT	`			WM	-			DM	0	
s Argun									0						s uses up to s+5.
-	ction														
s+5	5 s+4 0 15 0				15	s+		0 15	s	0	15	s+3		15	0 0
Real nu					R	leal nu				umber		eal nu	mber		number
porti	on portion] <-		FSU	В	port	tion		porti	ion		porti	on	po	ortion
	ts the real number (s-							-1), tł	nen set	ts the r	esult i	n (s+4	, s+5)		
	alculation is complete ating point format con					l to "0)."								
	ary notes				6	1			DED	,					
	ne operation result is +5 exceeds the maxim												is per	forme	ed.
Program	example														
R105 D	DIF5														
	1	DR	100 =	H4348	8000		Ц) R01				
	11			H42C9 (WR10						[ND DIF		0000		
							_			DI	R0100 = R0102 =	H42C9	00000		
										F(JN 105 (WRUI	,0)		
Program	description														
At a risir	ng edge of R0105	the re	al ni	ımber	specifie	d in ⊺	DRO	0102	(WR0	102. V	VR010)3) is	subtra	acted	from the real number
specified	in DR0100 (WR010), WR	0101), and	the resu	lt is se	et in								
Internal o					/R0100 = VR0102										
Operation					VR0104										

Name Floating Po	oint Op	eration	n (Multipl	ication)									
Ladder form	at			Co	ndition o	code			Proc	essin	g time	e (μs)	Remark
FUN 106 (s	2)		R7F4	R7F3	R7F2	R7F	-1 F	R7F0	A	ve	М	ax	
* [FMUL (s)	<i></i>		DER	ERR	SD	V		С					
]		\uparrow	•	•	•		•	-				
Command for	mat			Nur	nber of s	steps			125		÷		
FUN 106 (s	/			Conditio	n		Steps	6	_				
* [FMUL (s)	* [FMUL (s)]						3						
			Bit	Bit			ord		Dou	uble v	vord	ant	
Usable I/O		Х	YR,	TD, SS,		WY	WR,	TC	DX	DY	DR,	Constant	Other
			М	CU, CT			WM				DM	0	
s Argument							0						s uses up to s+5.
Function													
s+5 s+ 15 0 15	-4 0			15	s+1	0 15	S	0	15	s+3		15	s+2 0
Real number Real n] _		R	eal numb		eal nu	-					number
portion port	ion	<-	FM	UL	portion		porti	on	×L	porti	on	po	ortion
• Multiplies the real nu						s+3), tl	nen set	ts the i	result	in (s+4	4, s+5)).	
 If the calculation is co The floating point for 					to "0."								
Cautionary notes													
 When the operation re If s to s+5 exceeds the 											is per	forme	ed.
Program example													
R106 DIF6													
		DR	100 = H434	88000									
			102 = H42C N 106 (WR1					[ND DIF R0100 =		0000		
								DI	R0102 =	H42C9	00000		
								FU]	JN 106	(WKUI	JU)		
Program description													
At a rising edge of R01	06 th	e real 1	numher sr	ecified in	DR0100) (WR	0100	WR01	01) is	multi	nlied	hv the	e real number specified
in DR0102 (WR0102, V	WR010)3), an	d the resu	lt is set in	DR0104					munt	Pilea	c, uit	i car namoer speemed
Internal output setting :			= H4348, Y = H42C9,										
Operation result :			= H469D,										

 $\ensuremath{^*}$ [] indicates the display when the LADDER EDITOR is used.

Name Floating Point Op	eratio	n (Di	vision)									
Ladder format				Co	ndition	code			Proc	essin	g time	e (μs)	Remark
EUN 107 (-)		R	7F4	R7F3	R7F2	R7	F1	R7F0	A	ve	M	ax	
FUN 107 (s)		C	DER	ERR	SD	\	/	С					
* [FDIV (s)]			\uparrow	•	•			•					
Command format				Nur	nber of	steps			160		÷		
FUN 107 (s)			(Conditio	n		Step	os					
* [FDIV (s)]			_			3							
			Bit			N	/ord		Dou	uble v	vord	ant	
Usable I/O	Usable I/O X					WY	WR, WM		DX	DY	DR, DM	Constant	Other
s Argument				CU, CT			0						s uses up to s+5.
Function					<u> </u>	•	•				•		•
s+5 s+4 15 0 15 0 Real number portion Real number portion Program example • Divides real number (s, s+1) • If the calculation is complete • The floating point format co Cautionary notes • When the operation result is • If s to s+5 exceeds the maxim	by reed nor nform	mally is to I	, DER EEE7 the rat	(s+2, s+3) (s +2, s+3)) (s +2, s+3)) (s +2, s+3))(s +2, s+3))(s +2, s+3))(s +2, s+3))(s +2, s+3))(s +2	eal num portion), then s l to "0."	ets the	Real nu port result	0 umber tion t in (s+	4, s+5	eal nu porti).	0 Imber on	15 Real	s+2 number ortion
Program description At a rising edge of R0107, the DR0102 (WR0102, WR0103) Internal output setting : WR0	e real , and 1	numb He res	sult is 348, W	8000 0) ecified ir	R0104 (= H8000	WR01		[D Fi]	ND DIF R0100 = R0102 = UN 107 101) is	7 = H4348 = H42C8 (WR010	38000	the re	cal number specified in
				/R0104 =									

Name	Floating Po	oint Op	peration	n (Angle to	Radian (Conversi	on)							
L	adder form	at			Cor	ndition c	ode			Proc	essin	g time	(μs)	Remark
Ŧ	FUN 108 (s	s)		R7F4	R7F3	R7F2	R7F	-1 R	R7F0	A	ve	M	ax	
	* [FRAD (s)	<i>,</i>		DER	ERR	SD	V		С					
	[FRAD (5)			\uparrow	•	•	•		•					
Co	mmand for	mat			Num	nber of s	teps			11	10	÷	<u>,</u>	
I	FUN 108 (s	s)			Conditior	า		Steps	5					
*	• [FRAD (s)]			—			3						
				Bit			W	ord		Dou	uble w	/ord	ant	
Usa	able I/O		Х	YR,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other
				М	CU, CT			WM				DM	O	
s Argume		1						0						s uses up to s+3.
Func		J												
s+3 s+2 s+1 s 15 0 15 0 15 0														
			eal nun	nher nortic		FR	1		numb	er nor	-	<u> </u>	l num	
	inder portion			noer portie				iteui	nume	or por	tion			
 Converts result in s If the calo 	15 0 15 0 15 0 15 0 Real number portion degrees × $\frac{\pi}{180}$ = radian • Converts the angle units of the real number value specified in s and s+1 as the arguments to radian units, the sets the result the result in s+2 and s+3. • If the calculation is completed normally, DER is equal to "0". • The floating point format conforms to IEEE754.													
Cautional • When the		esult is	not wi	thin the ra	nge of -1							is per	forme	d.
Program e	example													
	F8	-		100 = H42C8 N 108 (WR10					AN [DF	0 R01 ND DIF R0100 = IN 108 (8 H42C8			
Program de	escription]												
in DR0102	(WR0102, V tput setting :	WR010 WR	03). 0101 =		VR0100 =	= H0000	(WR0	100, V	VR010)1) is (convei	rted to	a rad	ian and the result is set

Name	Floating Po	oint Op	eratio	n (Ra	ıdian t	o Angle (Conversi	on)							
L	_adder form	at				Cor	ndition c	ode			Proc	essin	g time	(μs)	Remark
	FUN 109 (s	c)		R	R7F4	R7F3	R7F2	R7	F1 R	R7F0	A	ve	M	ax	
	* [FDEG (s)	<i>´</i>		[DER	ERR	SD	V	'	С					
	[I DEG (S)				\uparrow	•	•	•	•	•					
Co	ommand for	mat				Num	nber of s	steps			10)9	÷	<u>,</u>	
	FUN 109 (·			(Conditior	۱		Steps	6					
	* [FDEG (s)]				_			3						
					Bit			W	ord		Doι	uble v	/ord	ant	
Us	able I/O		Х	Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other
					М	CU, CT			WM				DM	с С	
s Argum		1							0						s uses up to s+3.
Func]													
15	s+3	0 15		s+2		0			15	s+	-1	0	15		s 0
	mber portior	-	201 1011	nhar	portio	/ /	— FI	DEG		numb	or not			1 1111	ber portion
				noer	portio		11		Real	nunnu	per por	tion	Rea	u nun	
radian \times	180 =	degre	es												
• Converts	π the radian u	nits of	the rea	al nui	nber v	value spec	cified in	s and	s+1 as	the are	gumer	nts to a	ingle i	inits.	then sets the result in
s+2 and s	s+3.					-							0	,	
	culation is co						to "0".								
		i													
Cautiona	-] 1. ·			.1	C 1		1 . 25		. ,					
	e operation ro 3 exceeds the												is per	forme	ed.
		1									•		•		
Program	example														
R109 DI	F9														
	<u> </u>				H3FDF						D R01				
	•		FU	IN 109	(WR10	0)				[R0100 =		F66F3		
											JN 109				
										1					
Program d	escription														
]													
	edge of R01 2 (WR0102, V			umb	er spec	cified in I	JR0100	(WR(0100, W	VR010	01) is c	conver	ted to	an an	gle and the result is set
Internal ou	tput setting :	WR	0101 =												
Operation	result :	WR	0103 =	= H42	2C8, V	VR0102 =	- HUUUU								

Name Flo	oating Po	int Op	eratio	on (SI	N)										
Ladd	er forma	at				Cor	ndition a	code			Proc	essin	g time	e (μs)	Remark
FUN	110 (s	\ \		F	R7F4	R7F3	R7F2	R7	F1 R	R7F0	A	ve	M	ax	
	FSIN (s)	·		[DER	ERR	SD	V	,	С					
· [F	5110 (8)]				\uparrow	•	•	•	,	•					
Comm	and forn	nat				Num	nber of s	steps			38	81	€	÷	
FUN	110 (s)			(Conditior	า		Steps	6					
* [F	FSIN (s)]					_			3						
					Bit			W	ord		Doι	uble v	vord	Int	
Usable	I/O		Х	Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other
					М	CU, CT			WM				DM	ŭ	
s Argument									0						s uses up to s+3.
Function															
s+3				s+2						s+	-1				S
15) 15							15				15		0
Real number	r portion	Re	eal nu	mber	portio	n 🤇	FS	SIN	Real	numb	per por	tion	Rea	ıl nur	ber portion
• Calculates the s+2 and s+3.	e sine val	ue of	the re	al nui	nber v	alue in ra	dian uni	ts spe	cified i	n s an	d s+1	as the	argun	nents,	then sets the result in
• If the calculat							to "0".								
• The floating p	point form	nat co	nform	is to I	EEE7	54.									
Cautionary no	otes														
• When the ope		sult is	not w	vithin	the ra	nge of -1	e+37 to	1e+37	, DER	is set	to "1.'	,			
• If s to s+3 exc															ed. nus DER is set to "1."
															by decreases, so DER
is set to "1."															
Program exar	nple														
i rogiani oxai	iipio														
R110 DIF10								1							
					H3F06 (WR10		-				D R01 ND DIF				
					(-)					R0100 =				
										FU]	JN 110 (WR010)0)		
Program descr	iption														
		0 1	CDI	. 6.4		1.			0100 (1		00 117	D 010	1) :	.1. 1	
At a rising edge in DR0102 (WI				of the	e real r	iumber sp	ecified	n DR	0100 ()	WK01	00, W	K010	1) 1S C	alcula	ted and the result is set
Internal output	setting :	WR	0101			R0100 = 0.000									
Operation resul		WR	0103	- H3	FUU, V	/R0102 =	- HUUUU								

Ladder format Condition code Processing time (µs)													
	Remark												
FUN 111 (s) R7F4 R7F3 R7F2 R7F1 R7F0 Ave Max													
* LECOS (c)] DER ERR SD V C													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Command format Number of steps 428													
FUN 111 (s) Condition Steps													
* [FCOS (s)] 3													
Bit Word Double word E													
Usable I/O X Y R, TD, SS, WX WY WR, TC DX DY DR, WA OD DA	Other												
	uses up to s+3.												
Function													
s+3 s+2 s+1 s													
15 0 15 0 15 0 Real number portion Real number portion FCOS Real number portion Real number portion													
Real number portion Keal number portion Keal number portion	er portion												
• Calculates the cosine value of the real number value in radian units specified in s and s+1 as the arguments, t s+2 and s+3.	, the sets the result in												
• If the calculation is completed normally, DER is equal to "0".													
• The floating point format conforms to IEEE754.													
Cautionary notes													
• When the operation result is not within the range of $-1e+37$ to $1e+37$, DER is set to "1".													
 If s to s+3 exceeds the maximum value of the I/O number, DER is set to "1" and no operation is performed. When the value of s, s+1 is greater than 1.414847550405688000e+16, the cosine value cannot be calculated and 													
• When the value of s, s+1 is greater than 2.98156826000000000e+08, a result is obtained but the accuracy defined by the accur													
is set to "1".													
Program example													
R111 DIF11													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
FUN 111 (WR100) [DR0100 = H3F060A92													
FUN 111 (WR0100)													
Program description													
At a rising edge of R0111, the cosine value of the real number specified in DR0100 (WR0100, WR0101) is result is set in DR0102 (WR0102, WR0103).	is calculated and the												
Internal output setting : WR0101 = H3F06, WR0100 = H0A92													
Operation result : WR0103 = H3F5D, WR0102 = HB3D7													

Name	Floating Poi	nt Op	eratio	n (TA	N)										
La	dder forma	t				Cor	ndition o	ode			Proc	essin	g time	(μs)	Remark
FI	UN 112 (s)			R	7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	M	ax	
				D	DER	ERR	SD	V	,	С					
*	[FTAN (s)]				\uparrow	•	٠	•	,	•					
Com	nmand form	nat				Num	ber of s	steps			4	1	÷	<u>,</u>	
FU	UN 112 (s)				(Conditior	۱		Steps	6					
*	[FTAN (s)]					_			3						
					Bit			W	ord		Doι	uble v	vord	Int	
Usat	ble I/O		Х	Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other
					М	CU, CT			WM				DM	ŭ	
s Argumen	nt								0						s uses up to s+3.
Functio	on														
	+3			s+2						s+	-1				S
15		15							15				15		0
Real num	ber portion	Re	eal nu	mber	portio	n 🤇	F".	AN	Real	numb	per por	tion	Rea	ıl nur	ber portion
• Calculates in s+2 and		value	of the	real i	numb	er value i	n radian	units	specifi	ed in s	and s	+1 as	the arg	gumei	nts, the sets the result
• If the calcu		nplete	ed nor	mally	, DEF	t is equal	to "0".								
• The floatin	ng point form	nat co	nform	s to Il	EEE7	54.									
Cautionary	/ notes														
• When the o		sult is	not w	rithin	the ra	nge of -1	e+37 to	1e+37	, DER	is set	to "1"				
• If s to s+3	exceeds the	maxir	num v	value	of the	I/O numl	ber, DEF	R is se	t to "1'	' and r	no ope	ration			
															and DER is set to "1". acy decreases, so DER
is set to "1									2						2
Program ex	xample														
R112 DIF12	2									T	D D 01	10			
				R100 = JN 112			-				D R01 ND DIF				
											R0100 =				
										FU]	JN 112 (WR010)0)		
Program des	scription	_	_	_	_			_		_	_	_	_	_	
At a riging	dae of PO11	ĵ +⊾.	a tomo	ant	alua c	f the real	numhar	anaa	fied in	מסת	100 (1	VD014	0 117	00101) is calculated and the
result is set i	in DR0102 (WR01	102, Ñ	VR010	03).			-	neu m	DKU	100 (1	V KUI	, w	10101	I) is calculated and the
Internal outp Operation re						/R0100 = /R0102 =									
operation le		W K	- 103 -	- 113F	15, 1	10102 -	TCD3F	,							

Name Floating Point	t Op	eratio	n (AR	C SI	N)									
Ladder format			Ť			ndition c	ode			Proc	essin	g time	(μs)	Remark
$\mathbf{EUN}(112)$			R	7F4	R7F3	R7F2	R7	-1 F	R7F0	A	ve	Ma	ax	
FUN 113 (s)			D	ER	ERR	SD	V		С					
* [FASIN (s)]				\uparrow	•	•	•		•					
Command forma	at				Num	nber of s	steps			32	21	÷	<u>,</u>	
FUN 113 (s)				(Conditior	۱		Steps	6					
* [FASIN (s)]					_			3						
				Bit			W	ord	1	Dou	uble v	vord	tant	
Usable I/O		Х		R,	TD, SS,	WX	WY	WR,	TC	DX	DY	-	Constant	Other
s Argument				М	CU, CT			WM O				DM	0	s uses up to s+3.
Function								0						s uses up to s+5.
s+3			s+2						s+	-1				S
15 0	15				0			15		-	0	15		0
Real number portion	Re	eal nur	mber p	oortio	n Ç	FA	SIN	Real	l numb	er por	tion	Rea	ıl num	iber portion
 Calculates the SIN ⁻¹ va in s+2 and s+3. If the calculation is comp The floating point forma 	plete	ed nor	mally,	DER	t is equal	•	in s a	na s+1	as the	e argu	ments	, and s	sets th	le result in radian units
Cautionary notes														
 When the operation resu If s to s+3 exceeds the n When the value of s, s+1 	naxi	mum v	value o	of the	I/O num	ber, DEI						is per	forme	ed.
Program example														
R113 DIF13			R100 = H JN 113 ([DF	0 R01 ND DIF R0100 = JN 113 (13 H3F80			
Program description														
At a rising edge of R0113 result is set in DR0102 (W Internal output setting :	/R01 WR(102, W 0101 =	VR010 = H3F	93). 80, W		H0000	-	fied in	DR01	.00 (W	VR010	00, WI	R0101) is calculated and the

Name	Floating Point Op	eration	(ARC CO	DS)									
La	adder format			Cor	ndition c	ode			Proc	essin	g time	(µS)	Remark
F	UN 114 (s)		R7F4	R7F3	R7F2	R7I	-1 F	R7F0	Av	ve	Ma	ax	
	[FACOS (s)]		DER	ERR	SD	V		С					
	[TACOS (S)]		\uparrow	•	•	•		•					
Сог	mmand format			Num	ber of s	teps			31	14	÷		
	TUN 114 (s)		(Conditior	ı		Steps	5					
*	[FACOS (s)]			_			3						
			Bit			W	ord		Dou	uble v	vord	ant	
Usa	able I/O	X	YR,	TD, SS,	WX	WY	WR,	TC	DX	DY	-	Constant	Other
			М	CU, CT			WM				DM	C	
s Argume							0						s uses up to s+3.
Funct													
15	s+3 0 15	S	+2		15	s+	-1	0	15		s 0		
		al num	ber portio		T FA	COS		numb	or nor		1	1 num	ber portion
	-		-	`					· ·				-
• Calculates in s+2 and		of the re	eal numb	er value sj	pecified	in s ai	nd s+1	as the	argun	nents,	and se	ets the	result in radian units
	culation is complete				to "0."								
• The float	ng point format con	niorms	IO IEEE/	54.									
Cautionar	y notes												
	operation result is											c	1
	s exceeds the maxir value of s, s+1 is g					t is se	t to "1"	and n	io ope	ration	is per	forme	·d.
Program e	example												
R114 DIF1	14												
	Δ		00 = H3F80		H			LE	D R01				
		FUN	114 (WR10	0)				[R0100 =		0000		
]				JN 114 (
]					
Program de	escription												
	•												
At a rising result is set	edge of R0114, the in DR0102 (WR01	e COS ⁻ 102 WF	⁻¹ value o R0103)	f the real	number	speci	fied in	DR01	100 (V	VR010	00, WI	R0101) is calculated and the
Internal out	put setting : WR	0101 = 1	H3F80, V										
Operation r	esult : WR(0103 = 1	H0000, W	/R0102 =	H0000								

Name Floating Poi	int Op	eratio	n (Al	RC TA	AN)									
Ladder forma	t				Cor	ndition c	ode			Proc	essin	g time	(μ s)	Remark
EUN 115 (a)			F	R7F4	R7F3	R7F2	R7	=1 F	R7F0	A	ve	М	ax	
FUN 115 (s) * [FATAN (s)			0	DER	ERR	SD	V	,	С					
· [FAIAN (S)]			\uparrow	•	•	•		•					
Command form	nat				Num	nber of s	steps			44	43	<	<u>.</u>	
FUN 115 (s)					Conditior	า		Step	s					
* [FATAN (s)]				—			3					-	
				Bit			W	ord		Doι	uble v	vord	ant	
Usable I/O		Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
s Argument								0						s uses up to s+3.
Function														
s+3			s+2						s+	-1				S
	15				0			15				15		0
Real number portion				portic	`				l numb			I		ber portion
 Calculates the TAN ⁻¹ y in s+2 and s+3. If the calculation is cor The floating point form 	nplete	ed nor	mally	, DEF	R is equal	-	in s a	nd s+1	as the	argun	nents,	and so	ets the	e result in radian units
Cautionary notes														
 When the operation res If s to s+3 exceeds the 												is per	forme	ed.
Program example														
R115 DIF15														
┝-┥┝				HC000		_) R01 ND DIF				
		FU	JN 115	(WR10)0)				[Dł	R0100 =	HC000	00000		
]				JN 115 (
Program description														
At a rising edge of R011 result is set in DR0102 (Internal output setting : Operation result :	WR01 WR0	102, W 0101 =	VR01 = HC	03). 000, V		= H0000	-	fied ir	n DR0	100 (V	VR010	00, W	R0101	1) is calculated and the

Name	Floating P	oint Op	eratio	n (Sq	juare I	Root)									
L	adder form	at				Cor	ndition o	ode			Proc	essin	g time	e (μs)	Remark
1	FUN 116 ()	c)		F	R7F4	R7F3	R7F2	R7	=1 F	R7F0	A	ve	M	ax	
		<i>,</i>		1	DER	ERR	SD	V	,	С					
	* [FSQR (s)				\uparrow	•	•	•		•					
Co	mmand for	mat				Num	nber of s	steps			53	32	€	÷	
I	FUN 116 (s)				Conditior	า		Steps	3					
•	* [FSQR (s)]				_			3						
					Bit			W	ord		Doι	uble v	vord	ant	
Usa	able I/O		Х	Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR,	Constant	Other
					М	CU, CT			WM				DM	0	
s Argume		1							0						s uses up to s+3.
Func				-											
15	s+3	0 15		s+2		0			15	s+	-1	0	15		s 0
	mber portior	_	eal nu	mber	portio	/	FA	TAN		l numb	per por		1	ıl nun	ber portion
	<u>^</u>				•	`									esult in $s+2$ and $s+3$.
• If the cal	culation is co	omplete	ed nor	mally	y, DEF	t is equal		ii 5 ui	u 5 · 1 (arguin	onto, ti	ne sets		55 and 5 + 2 and 5 + 5.
• The float	ing point for	mat co	nform	s to I	EEE/	54.									
Cautional	ry notes														
	e operation r													C	1
	3 exceeds the value of s,													torme	a.
_															
Program e	example]													
R116 DIF	516														
	<u>}</u>				H4000		_			LE AN	D R01				
			FU	IN 110	(WR10	0)				[R0100 =		0000		
										FU 1	JN 116 (WR010)0)		
Program de	escription														
At a rising	adra of PO	- 116 +1		oro r	oot of	the real	number	maaif	iad in	1000	00 (14	/ D 010	0 W	20101) is calculated and the
result is set	t in DR0102	(WR0	102, V	VR01	03).			speen	ieu ill	DK01	00 (M	KUIU	o, wr	10101	j is calculated and the
Internal ou Operation	tput setting : result :					/R0100 = VR0102 =									
operation		~ IX		.1.51		. 100102	110 11 5								

Name	Floating Po	oint Op	eratio	n (Expor	ent)									
L	_adder form	at			Co	ndition o	ode			Proc	essin	g time	e (μ s)	Remark
	FUN 117 (s	-		R7F	4 R7F3	R7F2	R7F	-1 F	R7F0	A	ve	M	ax	
	* [FEXP (s)	<i></i>		DEF	R ERR	SD	V		С					
	· [FEAP (8)]		\uparrow	•	•	•		•					
Co	ommand for	mat			Nur	nber of s	steps			39	92	€	<u>.</u>	
	FUN 117 (s	/			Conditio	n		Steps	6	-				
	* [FEXP (s)]			_			3					1	
				В	it		W	ord	-	Doι	uble v	vord	ant	
Us	able I/O		Х	YR,	TD, SS,	WX	WY	WR,	TC	DX	DY	-	Constant	Other
s Argum	ont			M	CU, CT			WM O				DM	0	
s Argumo								0						s uses up to s+3.
Func	s+3			s+2					s+	-1				9
15		0 15		512	0			15	51	1	0	15		s 0
Real nu	mber portion	ı Re	eal nur	nber por	tion <	FE	EXP	Real	numb	er poi	tion	Rea	ıl nur	iber portion
Performs	s an exponent	t opera	tion us	sing the r	eal number	value sp	ecified	1 in s a	und s+	1 as th	e argu	iments	s, the	sets the result in s+2
and s+3.		-		-		-					c		-	
• If the cal	culation is co	omplete	ed nor	mally, D	ER is equal		(8).							
• The float	ting point for	mat co	nform	s to IEEI	E 754 .									
Cautiona	iry notes													
	e operation re													
	-3 exceeds the ion cannot be													ed. ER is set to "1."
		r)	
Program	example													
R117 DIF	F1 7													
	<u>}</u>			R100 = H40						D R01				
	1		FU	N 117 (WI	(100)				[R0100 =		0000		
										JN 117 (
									1					
Program d	escription													
	1 (D))	17				1	1		1. 5	DO10	0 (11-	0100	u m	
the result is	s set in DR01	102 (W	R0102	2, WR01	03).		nder sj	pecifie	a in D	0KU10	U (Wł	CU100,	, w K(0101) is performed and
Internal ou Operation	tput setting :	WR	0101 =	= H4000	WR0100 = , WR0102									
Operation	iesuit.	W K	- 2010	- 1140EC	, wku102	- п/320								

Name	Floating Point Op	eratio	on (Natural	Logarithn	n)								
	Ladder format			Cor	ndition c	ode			Proc	essin	g time	(μs)	Remark
	FUN 118 (s)		R7F4	R7F3	R7F2	R7	-1 R	7F0	A	ve	M	ax	
	* [FLOG (s)]		DER	ERR	SD	V		С					
	[1100(3)]		\uparrow	•	•	•		•					
Co	ommand format			Num	nber of s	steps			28	89	÷	<u>,</u>	
	FUN 118 (s)			Conditior	ו		Steps	;					
	* [FLOG (s)]			—			3						
			Bit			W	ord		Doι	uble v	vord	ant	
Us	sable I/O	Х	YR,	TD, SS,	WX	WY	WR,	ТС	DX	DY	DR,	Constant	Other
			М	CU, CT			WM				DM	0	
s Argum							0						s uses up to s+3.
Fund													
15	s+3 0 15		s+2	0			15	s+	-1	0	15		s 0
-		eal nu	mber portio		FL	.OG		numb	er por	tion	Rea	ıl num	ber portion
	s a logarithm operati		-	`	ue speci	fied b			_				<u>^</u>
the base	, then sets the result	in s+2	2 and s+3.		-	neu o	y urgun	nents	5 unu .	5 · 1 u.	,ing th	e nata	inar iogaritiini (0) us
	lculation is complete ting point format con				to "0."								
Cautiona	-												
	e operation result is -3 exceeds the maxir										is per	forme	d.
	ion cannot be perfor												
Program	example												
R118 DI	F18				1			LE) R01	18			
4			R100 = H3F00 JN 118 (WR10		H				VD DIF				
									R0100 =				
I					I]	JN 118 (WRON	,0)		
Program c	lescription												
					e real nur	nber s	pecifie	ed in E	DR010	0 (WI	R0100	, WR(0101) is performed and
	is set in DR0102 (W utput setting : WR0				H0000								
Operation			= HBF31, V										

Name	Floating Point O	peratic	on (Co	ommoi	n logarith	m)										
La	adder format				Cor	ndition c	ode			Proc	essin	g time	(μs)	I	Remark	
			F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	M	ax			
F	FUN 119 (s)		[DER	ERR	SD	V	,	С							
				\uparrow	•	•	•	•	•							
Co	mmand format				Num	nber of s	steps			47	74	•	<u>,</u>			
Ŧ	FUN 119 (s)			(Conditior	۱		Steps	6							
1	(3)				_			3								
				Bit			W	ord		Dou	uble v	vord	ant			
Usa	able I/O	Х	Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY		Constant		Other	
				М	CU, CT			WM				DM	C			
s Argume								0						s uses u	up to s+3	8.
Funct																
15	s+3 0 15		s+2		0			15		s+1		0 15		S	0	
		eal nu	mher	nortio		— FI	JN 11		eal nu	mher 1	ortio	<u> </u>	Peal n	umber p		
				<u>^</u>	`											(10) ==
	a logarithm opera then sets the result				imber vai	ue speci	nea b	y argui	nents	s and :	s+1 us	sing th	e com	imon log	garithm (10) as
	culation is completing point format co					to "0."										
		JIIOIII	15 10 1		J 4 .											
Cautionar	ry notes															
	operation result is exceeds the max											ic por	form	d		
	on cannot be perfo														"1."	
Program e	example															
R119 DIF	19															
	<u>}</u>			H447A (WR10					LI Al	D R01 ND DIF						
		г	JN 119	(WKIU	0)				[Dł	R0100 =	H447A	0000				
									FL 1	JN 119 ((WR010)0)				
									L							
Program de	escription															
A	. l CD0110 . 1	. 1.	-1			1	. 1	• ~	. 1	ND 0 1 0	0 /117	20100	M/D	0101\ ·		. 1 . 1
	edge of R0119, the set in DR0102 (V					e real nui	nber s	specifie	ed in L	JK010	(W) U	x0100	, WR(J1U1) IS	perform	ed and
Internal out	put setting : WR	k101=F	1447.	A, WR	100=H00											
Operation r	csuit. WF	103=1	14040	J, WK	102=H00	00										

Nar	ne High-speed	l Coun	ter Cı	ırrent	Value	e Replacei	ment									
	Ladder forma	at				Cor	nditior	n code	;			Proc	essin	g time	(μs)	Remark
				F	R7F4	R7F3	R7F	2 R	7F1	R	7F0	A	ve	М	ax	
	FUN 143 (s	5)		[DER	ERR	SD		V		С	6	3.5	*	<u>.</u>	Upper case: 16-bit
					\uparrow	•	•		•		•	0.3	5.5			Lower case: 32-bit
	Command forr	mat				Num	nber c	f step	S							
	FUN 143 (s	9				Conditior	ו		St	eps	;	69.2		←		
	1011115 (3	·)				—				3						
				-	Bit	-			Norc			Dou	uble v	vord	ant	
	Usable I/O		Х	Y	R, M	TD, SS, CU, CT	W	X W	Y W W		TC	DX	DY	DR, DM	Constant	Other
	rgument counter number)								(2						
A	rgument (Replace	ement)						
Va	alue storage area) rgument (Replace	amont							,)						Only 32bit counter
	alue storage area)	ement							(2						used.
	Function															
	15	8	7			0	Cour	iter nu	mber			to H04				
s	Counter numb	ber			**		**.				Disal	ole are	a			
s+1	Replacem	ent va	alue	stora	ge ar	ea										
s+2	Replacem	ent va	alue	stora	ge ar	ea	s+2:	At the	time	of 3	32-bit	count	er use			
• The counter value of the specified counter number will be replaced by the data stored in the replacement value storage area.																
Cau	tionary notes															
	hen using a 16-bit								1		DED	.11 1				
	a value other that rformed.	n H01	to H	04 1s	speci	fied for t	he co	unter	numb	er,	DER	will b	e set	to "I	and	no processing will be
• Îf	the specified count											ternal	I/O co	ounter	(singl	e-phase counter,
	o-phase counter), I nce Counter 4 is in											ied, D	ER w	ill be	set to	"1" and no processing
wi	ll be performed.				-						-					
	processing will be			s una	ble to	make an o	Sulpul	(PI/O	Tune	tion	setti	ig rest	iit by	K/F3)	, DEF	R will be set to "1" and
		ly used	d to re	ewrite	the c	ount value	e. Oth	er cou	nter s	ettii	ngs w	ill not	be ch	anged	and v	vill not affect the count
	eration. the range for S exc	eeds th	ne val	id ran	ge of	the I/O, D	ER w	ill be :	set to	"1"	and r	no proe	cessin	g will	be per	rformed.
Proc	gram example															
	ase of 16-bit count	or 1														
R3																
ЦЦ	4 k				H0100			Ц					R3 DIF3			
				'R31 = UN 143	1000 (WR3)	0)					[= H100			
]			W		= 1000			
]	14	J(WK	50)		
[In c	ase of 32-bit count	er]														
R3	DIF3			D 20	110100			11					R3 DIF3			
			D	R31 =	H0100 100000			Η			[
			FU	JIN 143	(WR3)	U)]			DI	R31 =	= H100 = 10000	0		
								I			FU]	JN 14	S(WR.	50)		

Name	High-speed	Counter Current Value Replacement							
Program de	escription								
L .		er] Rewrite the count value of the Counter number 1 to 1000. er] Rewrite the count value of the Counter number 1 to 100,000.							

		Tent	value I	reading					1				ſ
Ladder format					ndition c	ode			Proc	essin	g time (μs)		Remark
		_	R7F4	R7F3	R7F2	R7		7F0	Ave		Max		
FUN 144 (s)			DER	ERR	SD	V	'	С	64.9		←		Upper case: 16-bit
			\uparrow	•	•)	•					Lower case: 32-bit
Command format		_			ber of s	steps	01		79.8		÷		
FUN 144 (s)		-		Conditior	1		Steps 3	•	- 19	.0		_	
			Bit			10/	ord		Double v				
Usable I/O	X	Y	R,	TD, SS,	WX	WY	WR,	TC	DX DY		DR,	Constant	Other
		-	M	CU, CT			WM		2.1	21	DM	Cor	
s Argument (counter number)							0						
+1 Argument (Current val	ie						0						
storage area)	ıe						-						Only 32bit counter
+2 storage area)							0						used.
Function					_		_						
s Counter number	8 7		**	0	Counter	r num	ber:		to H04 ble are				
s+1 Current v	alue stor												
s+2 Current v		-			s+2: At	the ti	me of 3	82-hit	counte	er iice			
• This function reads the co		-		cified cor							t valu	e stor:	age area
Cautionary notes													
 When using a 16-bit cour. If a value other than H performed. If the specified counter n two-phase counter), DEF Since Counter 4 is inval will be performed. If the specified counter r no processing will be performed. This instruction is only a operation. 	D1 to H umber i will be d when umber i formed.	04 is s set to set to a 10 s una	speci to a fur o "1"ar -point ble to	fied for the field for the nd no proof CPU is u make an of	er than a cessing v sed, if C output (F	corre vill be Counte PI/O f	espondi e perfor er 4 is s unctior	ng ext rmed. specifi settir	ternal i ied, Di ng resu	I/O co ER wi	ounter ill be s R7F5)	(singl set to), DEF	e-phase counter, "1" and no processin R will be set to "1" and
 The execution of this ins <u>If the range for S exceed</u> 					07A to V	WRF 0)7D (sti	robe a	rea) ar	nd WF			
• The execution of this ins					07A to V	WRF 0)7D (sti	robe a	rea) ar	nd WF			

Name	High-speed counter current value reading
Program de	escription
-	 16-bit counter] Load the count value of the Counter number 1 to WR41. If the count value of the Counter number 1 is less than 2,000, R144 is turned on. 32-bit counter] Load the count value of the Counter number 1 to DR41 (WR41, WR42). If the count value of the Counter number 1 is less than 200,000, R144 is turned on.

Name	High	-speed count	er pres	et											
	Ladder	format				Cor	ndition a	code			Proc	essin	g time	(μs)	Remark
				F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	Ma	ax	
	FUN 14	46 (s)			DER	ERR	SD	V	'	С	0.1	F	÷		Upper case: 16-bit
					\uparrow	•	•)	•	81	.5	,		Lower case: 32-bit
C	Commar	nd format				Nurr	nber of a	steps							
	FUN 14	46 (s)			(Conditior	า		Step	s	69.1		÷		
	TON	40 (3)				_	3								
					Bit			W	Word		Double v		vord	ant	
U	lsable I/	0	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
	ment(cou t specific	inter number, ation)							0						
Argu									0						
Argui									0						16 bit counter : off-preset value
Argui		<i>.</i>							0						16 bit counter : not used
s+4 Argun (off-p	ment oreset val	ue)							0						16 bit counter : not used
Fur	nction														
[32-bit 0	Counter]						Counte	r 11111	har :	U01	to U0	4			
15		8	7			0					– Sp	ecific			preset value
s	Counter	r number	Pre	set s	specifi	cation				H01			oreset		preset value only
s+1		on-pres	set valu	ıe											preset value only
s+2		on-pres													
s+3		off-pres													
s+4		off-pres	set val	ıe											
[16-bit (Counter]	l													
15		8	7			0									
s	Counter	r number	1	set s	specifi										
s+1		on-pres	set valu	ıe											
s+2		off-pres	set val	ıe											
		alue and off- e output value												ecified	l counter number.

 Cautionary notes If a value other than H01 to H04 is specified for the counter number and a value specification, DER will be set to "1" and no processing will be performed. Since Counter 4 is invalid when a 10-point CPU is used, if Counter 4 is specified will be performed. If the specified counter number is set to a function other than a corresponding extert two-phase counter), DER will be set to "1" and no processing will be performed. The specified preset value will be checked using the criteria shown below. If an processing will be performed. If there is no error, the bit respective to the setting error detail information WRF05 operation disabled status. When the preset specification is 00H 16-bit counter : If S+1 (on-preset) and S+2 (off-preset) values are equal, and error 32-bit counter : If S+1 (on-preset) and S+3~S+4 (off-preset) values are equal, and error 32-bit counter : If S+1 (on-preset) and the off-preset value of WRF076 to WRF076 to counter : If S+1 (on-preset) and the off-preset value of WRF076 to WRF073-bit counter : If S+1 (off-preset) and the off-preset value of WRF072 to WRF073-bit counter : If S+2 (off-preset) and the on-preset value of WRF1B8 to 3] When the preset specification is 02H 16-bit counter : If S+3~S+4 (off-preset) and the on-preset value of WRF1B0 to Although the 64-point type CPU does not become an error when the ON preset value of with on the order of the order off-preset value of WRF1B0 to Although the 64-point type CPU does not become an error when the ON preset value of WRF1B0 to WRF1B0 to WRF1B7 to WRF1B8 to WRF1B7). However, it is not referred to the special internal of WRF078 / WRF1B0 to WRF1B7 and WRF1B8 to WRF1BF). However, it is not referred to the special internal of WRF078 / WRF1B0 to WRF1B7 and WRF1B8 to WRF1BF). However, it is not referred torder of the value of the valu	d, DER will be set to "1" and no processing rnal I/O counter (single-phase counter, error occurs, DER will be set to "1" and no 7 will be set to "0" and releases the ror is generated. ual, and error is generated. 079 are equal, an error is generated. WRF1BF are equal, an error is generated. 075 are equal, an error is generated. WRF1B7 are equal, an error is generated. WRF1B7 are equal, an error is generated. alue / OFF preset value is in agreement by 0, r counter settings will not be changed and it utput (WRF072 to WRF075 and WRF076 to
 If a value other than H01 to H04 is specified for the counter number and a value specification, DER will be set to "1" and no processing will be performed. Since Counter 4 is invalid when a 10-point CPU is used, if Counter 4 is specified will be performed. If the specified counter number is set to a function other than a corresponding extent two-phase counter), DER will be set to "1" and no processing will be performed. The specified preset value will be checked using the criteria shown below. If an processing will be performed. If there is no error, the bit respective to the setting error detail information WRF05 operation disabled status. I] When the preset specification is 00H 16-bit counter : If S+1 (on-preset) and S+2 (off-preset) values are equal, and error 32-bit counter : If S+1-S+2 (on-preset) and S+3-S+4 (off-preset) values are equal, and error 32-bit counter : If S+1 (on-preset) and the off-preset value of WRF076 to WRF032-bit counter : If S+1 (on-preset) and the off-preset value of WRF076 to WRF032-bit counter : If S+1 (off-preset) and the off-preset value of WRF072 to WRF032-bit counter : If S+3-S+4 (off-preset) and the on-preset value of WRF072 to WRF032-bit counter : If S+3-S+4 (off-preset) and the on-preset value of WRF072 to WRF032-bit counter : If S+3-S+4 (off-preset) and the on-preset value of WRF1B0 to Although the 64-point type CPU does not become an error when the ON preset value of wret if conditions are ready, a coincidence output does not turn on. This instruction is used only to set the on-preset value and off-preset value. Othe will not affect the count operation. The settings made using the instruction will be reflected in the special internal or WRF078 / WRF1B0 to WRF1B7 and WRF1B8 to WRF1BF). However, it is not reflected work of the setting set of the set of the setting set of the setting set of the set of the set of the set of	d, DER will be set to "1" and no processing rnal I/O counter (single-phase counter, error occurs, DER will be set to "1" and no 7 will be set to "0" and releases the ror is generated. ual, and error is generated. 079 are equal, an error is generated. WRF1BF are equal, an error is generated. 075 are equal, an error is generated. WRF1B7 are equal, an error is generated. WRF1B7 are equal, an error is generated. alue / OFF preset value is in agreement by 0, r counter settings will not be changed and it utput (WRF072 to WRF075 and WRF076 to
 16-bit counter : If S+2 (off-preset) and the on-preset value of WRF072 to WRF032-bit counter : If S+3~S+4 (off-preset) and the on-preset value of WRF1B0 to Although the 64-point type CPU does not become an error when the ON preset value or if conditions are ready, a coincidence output does not turn on. This instruction is used only to set the on-preset value and off-preset value. Othe will not affect the count operation. The settings made using the instruction will be reflected in the special internal or WRF078 / WRF1B0 to WRF1B7 and WRF1B8 to WRF1BF). However, it is not reflected in the special internal or WRF078 / WRF1B0 to WRF1B7 and WRF1B8 to WRF1BF). 	WRF1B7 are equal, an error is generated. alue / OFF preset value is in agreement by 0, r counter settings will not be changed and it atput (WRF072 to WRF075 and WRF076 to
Program example	
[In case of 16-bit counter]	
R6 DIF6 LD WR60 = H0100 AND WR61 = 5000 [WR62 = 10000 WR60 FUN 146 (WR60) WR60 FUN 146 (WR60)	$ \begin{array}{rcl} 0 & = H100 \\ 0 & = 5000 \\ 2 & = 10000 \end{array} $
[In case of 32-bit counter]	
R6 DIF6 LD WR60 = H0100 AND DR61 = 50000 I DR63 = 100000 WR60 FUN 146 (WR60) DR6 J J	$\begin{array}{ll} 0 & = H100 \\ 1 & = 50000 \\ 3 & = 100000 \end{array}$
Program description	
 [In case of 16-bit counter] Sets both the on-preset value and off-preset value in the Sets 5,000 for the on-preset value and 10,000 for the off- [In case of 32-bit counter] Sets both the on-preset value and off-preset value in the Sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the on-preset value and 100,000 for the original sets 50,000 for the o	-preset value. counter number 1.

Nan	ne Pulse frequ	iency o	utput	setti	ng cha	nges									
	Ladder form	at				Cor	ndition o	ode			Proc	essin	g time	(μ s)	Remark
				F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	M	ax	
	FUN 150 (s	5)			DER	ERR	SD	V	'	С					Upper case: 16-bit
					\uparrow	•	٠		•	•	132.9				Lower case: 32-bit
	Command for	mat				Num	nber of s	steps							
	FID: 150 (`			(Conditior	า		Steps	6	145.3		÷		
	FUN 150 (s	5)				_			3						
					Bit			W	ord	D		uble v	vord	ant	
	Usable I/O		Х	Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	DR, DM O		Other
					М	CU, CT			WM				DM	ŏ	
	rgument Pulse number)								0						
A A	rgument								0						
٨	Frequency value) rgument (Number	of													
S+2 01	utput pulses)								0						F (1.00.02)
	rgument (Number utput pulses)	of							0						Except mode 20-23 : not used
	Function														
• Se E • Se	Number of Number of Ilse output is commendation ts the frequency variable xample: To ts the count for the xample: M	er Frequer pulse pulse henced alue in set a f numb ode 2x	output output output at the Hz. reque er of c - To s	lue t (Lo t (Hig spec ncy c outpu	w word gh wor fified f of 10kl t pulse ttput o	d) requency. Hz, set 10 es.	← The p Output 000 (H2 00, set 1,	modes is stoj 710) : 000,0	s other oped or as inter 00 (HF	n : HO HO HO than n nce the nal ou 54240)	00: Set of j 01: Set 02: Set node 2 e numb tput.	ts the pulse ts the ts the ts the ts the transformed t	output freque numbe ot used pulses output	t, ency v er of p l. s spec	alue and number alue only, ulse output ified have been output. ble word). d).
Cau	itionary notes														
 If "1 Th ch In an Ex WH If t If t 	the external I/O cc "and no processing the minimum freque anged to 10 kHz in case of mode 2 d WRF1C0 to WR accept above : TH RF07A to WRF07I the range for S exc the pulse output nut t to "1" or FUN149	brrespo g will b ency th hternall 2x : Th F1C7). he setti D). eeds th umber i D) is se	onding be perf nat can y by t ne sett ngs b <u>e valie</u> is set t	to the corner of the sy ings by this dirant to "0, the sy ings by this because of the sy ings by	he puls ed. suppo /stem. by this s instr <u>ge of t</u> ," puls	se output rted is 10 s instructi uction wi <u>he I/O, D</u> e output v	number) kHz. I: on will ll be ref <u>ER will</u> will not	is set f a fre be ref flected <u>be set</u> be per	t to a f equency lected i l in the to "1" formec	unctio y valu in the e spec <u>and n</u> l even	n othe e sma specia ial int <u>o proc</u> when	er thar ller th l inter ernal <u>eessing</u> the p	n pulse nan 10 rnal ou output g will 1 ulse ou	e outp kHz utput (t (WR <u>be per</u> utput :	ng will be performed. nut, DER will be set to is specified, it will be (WRF1B0 to WRF1B7 F072 to WRF075 and <u>formed.</u> start (R7FC to R7FF is netion, DER will be set

• If this instruction is executed for the I/O that is outputting a pulse with the acceleration/deceleration function, DER w to "1" and no processing will be performed.

		Ladder format				Cor	ndition c	ode			Proc	essin	g time	(μs)	Remark
				F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	Ma	ax	
		FUN 151 (s)		I	DER	ERR	SD	V	,	С					Upper case: 16-bit
					\uparrow	•	•	•	,	•	1,4	18	•	. <u>.</u>	Lower case: 32-bi
	(Command format				Nun	nber of s	steps							(Processing time from executing command to
						Conditio	า		Steps	3	1,3	24	÷		pulse output.)
		FUN 151 (s)				_			3		-				
					Bit			W	ord		Doι	uble v	word te		
	ι	Jsable I/O	Х	Y	R, M	TD, SS, CU, CT	WX	WY	WR, WM	TC	DX	DY	DR, DM	Constant	Other
\$		e output number							0						
		ment (Total No. of it pulses)							0						
-2	Argu outpu	ment (Total No. of at pulses)							0						Except mode 20-23 Same as s+3
		ment (Maximum ency (Hz))							0						Except mode 20-23 Same as s+4
4	Argument								0						Except mode 20-23
	(Initial frequency (HZ)) 5 Argument (Acceleration								0						Same as s+5 Except mode 20-23
-5		eleration time (ms))							0						not used
	Fu	nction													
[]	n case	e of mode 2x]													
	,	15	8 7				0								
	s	Pulse output numbe			* *		Pulse	e outp	ut No.		H01 to Invalio				
	s+1	Total No. of outp	ut pul	ses N	I (Low	word)	· ·				iii v aiiv	a urea			
	s+2	Total No. of output	•			,									
	s+3	Maximum	•	2	. ,)									
	s+4	Initial fre	·				_								
	s+5	Acceleration / de	eceler	ation	time 7	Г (ms)									
[]		t above]	0 7				0								
	s	15 Pulse output numbe	8 7		* *	:	0 Pulse	e outp	ut No.	•	H01 to	5 H04			
	s+1	Total No. o		ימ זוור			** :	- up			Invali				
	s+2	Maximum		-			-								
	s+3	Initial fre		-		/	-								
	s+4	Acceleration / de	•	5 0	· /	Г (ma)	-								

• It outputs pulses from the pulse output terminal set with the pulse output number s until the total number of output pulses set with s+1, s+2 (s+1) is reached.

• Since the output of pulses starts from the one having the frequency set with s+4 (s+3), set the parameters so that the stepping motor and other devices will not become out of tune.

• Acceleration is performed at the acceleration time set with s+5(s+4) in 10 steps until the maximum frequency set with s+3 (s+2) is reached.

• Deceleration is performed at the deceleration time set with s+5 (s+4) until the total number of output pulses set with s+2 (s+1) is reached. The ratio of frequency change for the deceleration is the same as for the acceleration.

* () : In the cases of other than mode 2x

Na	me	Pulse output with	seque	ence	param	eter chang	ge								
	L	_adder format				Cor	ndition o	code			Proc	essin	g time	e (μs)	Remark
				F	R7F4	R7F3	R7F2	R7	F1 F	R7F0	A	ve	Μ	ax	
		FUN 153 (s)			DER	ERR	SD	V	'	С			15.005		Upper case: 16-bit
					\uparrow	•	٠	•)	•	169		15,095		Lower case: 32-bit
	Co	ommand format				Num	ber of s	steps							(Processing time from executing command to
						Conditior	า		Steps	6	173 15		15,	112	pulse output. The maximum time in
		FUN 153 (s)				_	-		3						case table number is set as 256.)
					Bit			W	ord		Double v		vord	ant	
	Us	able I/O	Х	Y	R,	TD, SS,	WX	WY	WR,	TC	DX	DY	-	Constant	Other
					М	CU, CT			WM				DM	Ũ	
	Argum Pulse]	ent No, Table No.)							0						
s+1 A	Argum								0						Set by the system
s+2 A	Argum	ent							0						s+2 to $s+5$ is required
	Outpu Argum	t frequency (Hz)) ent							0						by the number of tables.
s+3 (Table	change event)					_		0						
	(Event information)								0						
a+5 A	Argument (Acceleration								0						
(,													
	Func														
• 11		nmand performs a p 15	oulse o 8	-	t acco	rding to th	-				-			ible.	
	s	Pulse No.	0		Jumbe	r of table	1 u	lse No Imber). of tabl		H01 t H01 t			255)	
	s+1	Table No.	(curre						set by t				(,	
	s+2	Table 1 : Outpu			-				able co						
	s+3	Table 1 : Table		-		cification	- ^ :	Please	e refer t	to deta	ils abo	out ea	ch par	amete	r.
	s+4	Table 1 : Event	infor	natio	n (1)										
	s+5	Table 1 : Event	infor	natio	n (2)										
	6	¥					- A								
s+4	4n+2	Table n : Outpu	t freq	uency	(Hz)										
s+4	4n+3	Table n : Table	chang	e eve	ent spe	cification									
s+4	4n+4	Table n : Event	infor	natio	n (1)										
s+4	4n+5	Table n : Event	infori	natio	n (2)										
• Th	e num	e pulse output termin bers of tables which ng of the event regi	ı can	be re	gistere	d are H01	-HFF (1	-255)			-		-		

• Generating of the event of the last of a table suspends a pulse output.

[s+0] Pulse No, Number of table A pulse output terminal is set to a high byte, and the number of tables is set to a low byte.

[s+1] Table No. (current output table)

Table No. in which the parameter of the pulse currently outputted is stored is displayed. (It sets by the system.)

	with sequence parameter change	
Cautionary notes		
 If the output that correspondence output will not be a pulse output will not be a If the frequency are set a When the event which a 	generated. to a value smaller than 10 Hz, the specified	has not been set for pulse output, DER will be set to "1" and values will be changed to 10 Hz by the system. the watch of "trigger I/O" is performed the constant cycle of
Program example		
R7E3	$ \begin{array}{c} & WR100 = H0203 \\ WR102 = 10000 \\ WR103 = H0001 \\ WR105 = H4010 \\ WR105 = H4010 \\ WR106 = 8000 \\ WR107 = H0100 \\ DR108 = 10000 \\ WR10A = 500 \\ WR10B = H0100 \\ DR10C = 600 \end{array} \right\} Table 2 \\ Table 3 \\ FUN 153 (WR100) \\ \end{array} $	LD R7E3 [WR100 = H0203 WR102 = 10000 WR103 = H0001 WR104 = H0000 WR105 = H4010 WR106 = 8000 WR107 = H0100 DR108 = 10000 WR10B = H0100 DR10C = 600] LD R0000 AND DIF0 [FUN 153 (WR100)
Program description	·]

• If the event (X4010 ON) registered into the table 1 occurs, a pulse output will change to the parameter (frequency 8kHz, number of output 10,000) of a table 2.

• If the event (the completion of output 10,000 pulse) registered into the table 2 occurs, a pulse output will change to the parameter (frequency 500Hz, number of output 600) of a table 3.

• A pulse output will be stopped if the event (the completion of output 600 pulse) registered into the table 3 occurs.

Chapter 9 Option board

MICRO64 supports optional communication or user program back up function as follows.

The function of option boards and supported software version of MICRO64 are shown in the following table.

1 EH-OBMEM Backup of a user program and the special internal output for a setup of special function. Ver.0	101 ('04 / Aug. production) or later
2 EH-OB232 RS-232C serial communication port, Analog input 2ch Ver.0	101 ('04 / Aug. production) or later
3 EH-OB485 RS-422 / 485 serial communication port, Analog input 2ch Ver.0	100 ('04 / Jul. production) or later
4 EH-OBUSB USB communication port Ver.0	101 ('04 / Aug. production) or later

The software version of WICKOO4 is stored in WKF050 and WKF051.

[Notes]

If unsupported option board is attached, error code is stored in the self-diagnostic error area (WRF000) of special internal output however, the error indication by O.K. / RUN LED is not performed. When you attach the option board and the following phenomenon occurs, please check the soft version of a basic unit.

- Communication error.
- The user program is not backed up.

9.1 Mounting, Dismounting

Mounting of option board

(1) Remove the cover B and C.

(2) Connect an option board as shown in this picture.

1) Memory board

To basic unit

3) Memory board + Communication board

(9-1)

(3) Fix by attached screws.

EH-OBMEM is fixed by a screw, and other option boards are fixed by two screws.

(4) Attach covers

When only EH-OBMEM is installed, covers (B,C) can be attached.

In case of the other boards, only the cover B is attached.

Attach the included plastic cover to C as shown below.

A	В	C	
 ·			

Dismounting of option board

After removing a screw, lift up the option board at the part [R] by a finger or small screw driver.

When you use a screw driver, be careful not to damage a PCB or parts.

Attention on option board use

- 1. Mount of dismount without power supply.
- 2. Communication board can be attached one piece to one basic unit.
- 3. A communication board and a memory board can be used together however, dismount a memory board after reading / writing program because a memory board can not be fixed firmly.

9.2 Memory board

			Type Weight	EH-OBMEM 0. 01 kg						
	2] Protection switch									
	3] Mounting hole									
	1] Connector to basic unit (Back side)									
No.	Name	De	etails							
1]	Connector to basic unit	Connector to basic unit (located at the back side)								
2] Protection switch When the switch is on, the memory board is protected to be overwritten.										
3]	Mounting hole	Use M3 screw to fix								

The function of the memory board is to save user program and data in special internal outputs. It is also possible to read out to PLC, which enables users to copy program (incl. data in special internal outputs) without programming software or peripheral devices.

[Notes]

- If the memory board is mounted or dismounted while power is activated, PLC could fail operation. Be sure to power off before attaching or detaching the memory board.
- If the power is down before writing is completed, data is not saved properly. Be sure to power off after checking if writing is completed. (Writing status is monitored in WRF062.)

(1) Writing (CPU → Memory board)

- User program

If program is downloaded from PC with memory board attached, user program is written to memory board.

- Data in special internal outputs

Set special internal output flag "R7F6" to ON with memory board attached.

[Notes]

In case of online change in RUN, it takes 15 minutes at maximum because program processing is higher priority.

(2) Reading (Memory board → CPU)

Both user program and data in special internal outputs are read out to PLC at powered up. OK LED blinks (100 ms ON / 100ms OFF) while reading. (Communication does not work while reading. CPU does not in RUN mode too.) If read data is fault, OK LED blinks 3 times slowly (250 ms ON / 250ms OFF). Result code is stored in WRF062 also.

Figure 9.1 OK LED indication (In case of the memory board mount)

[Note]

If memory board is mounted, program and data in CPU are overwritten at powered up regardless of the contents or status. Be careful to use memory board to avoid deleting your program by mistake.

(3) Special internal output for memory board

3-1) WRF061 (Writing protection)

Besides protection switch, software protection is available.

 Table 9.1
 Setting values for writing protection

Status	WRF061			
Oldius	Set by user	Set by system		
Writing protection	H8001	H0001		
Cancel writing protection	H8000	H0000		

3-2) WRF062 (Status information)

Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WRF062 :	а	b	с	d		Not	used					Error	code			
Initial value :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 9.2 Special internal output for setting port

Area	Status	Details
a	Memory board writing [W]	Set while memory board is being written. Reset by system at writing completed.
b	Writing error (*) [W]	Set if writing is failed.
с	User program error [R]	Set if user program read from memory board is fault.
d	Internal output values error [R]	Set if internal output read from memory board is fault.
Error Code	00 (no error)	If writing is completed properly, error code is 00.
	01 (timeout for writing)	If no response from memory board at writing, it will be timeout error.
	02 (software protected) (*)	If writing is attempted in case software protected, it will be writing error.

[W] : While writing [R] : While reading

* If hardware protection switch is enabled and writing is attempted, writing error is not detected although memory board is not actually written.

(4) The special internal output memorized on a memory board

The special internal output memorized on a memory board is shown in the following table.

Table 9.2 Special internal output memorized on a memory board

	a	
No.	Special internal output	Function
1	R7EE	Battery error display selection
2	WRF01A	Dedicated port 1 Communication settings
3	WRF03C	Dedicated port 1 Modem timeout time
4	WRF03D	Dedicated port 2 Communication settings
5	WRF06B	Pulse and PWM auto correction setting
6	WRF06C	Potentiometer 1 Filtering time
7	WRF06D	Potentiometer 2 Filtering time
8	WRF06E	Analog input type selection
9	WRF06F	Phase counting mode
10	WRF070	I/O operation mode
11	WRF071	I/O detailed function settings
12	WRF072	Gr1 On-preset value / Output frequency
13	WRF073	Gr2 On-preset value / Output frequency
14	WRF074	Gr3 On-preset value / Output frequency
15	WRF075	Gr4 On-preset value / Output frequency
16	WRF076	Gr1 Off-preset value / On-duty value
17	WRF077	Gr2 Off-preset value / On-duty value
18	WRF078	Gr3 Off-preset value / On-duty value
19	WRF079	Gr4 Off-preset value / On-duty value
20	WRF07A	Gr1 Pre-load value / Number of output pulse
21	WRF07B	Gr2 Pre-load value / Number of output pulse
22	WRF07C	Gr3 Pre-load value / Number of output pulse
23	WRF07D	Gr4 Pre-load value / Number of output pulse
24	WRF07E	Input edge
25	WRF07F	Input filtering time
26	WRF0B0	[Mode 2x] Gr1 On-preset value(Low word) / Output frequency(Low word)
27	WRF0B1	[Mode 2x] Gr1 On-preset value(High word) / Output frequency(High word)
28	WRF0B2	[Mode 2x] Gr2 On-preset value(Low word) / Output frequency(Low word)
29	WRF0B3	[Mode 2x] Gr2 On-preset value(High word) / Output frequency(High word)
30	WRF0B4	[Mode 2x] Gr3 On-preset value(Low word) / Output frequency(Low word)
31	WRF0B5	[Mode 2x] Gr3 On-preset value(High word) / Output frequency(High word)
32	WRF0B6	[Mode 2x] Gr4 On-preset value(Low word) / Output frequency(Low word)
33	WRF0B7	[Mode 2x] Gr4 On-preset value(High word) / Output frequency(High word)
34	WRF0B8	[Mode 2x] Gr1 Off-preset value(Low word) / On-duty value
35	WRF0B9	[Mode 2x] Gr1 Off-preset value(High word)
36	WRF0BA	[Mode 2x] Gr2 Off-preset value(Low word) / On-duty value
37	WRF0BB	[Mode 2x] Gr2 Off-preset value(High word)
38	WRF0BC	[Mode 2x] Gr3 Off-preset value(Low word) / On-duty value
39	WRF0BD	[Mode 2x] Gr3 Off-preset value(High word)
40	WRF0BE	[Mode 2x] Gr4 Off-preset value(Low word) / On-duty value
41	WRF0BF	[Mode 2x] Gr4 Off-preset value(High word)
42	WRF0C0	[Mode 2x] Gr1 Pre-load value(Low word) / Number of output pulse(Low word)
43	WRF0C1	[Mode 2x] Gr1 Pre-load value(High word) / Number of output pulse(High word)
44	WRF0C2	[Mode 2x] Gr2 Pre-load value(Low word) / Number of output pulse(Low word)
45	WRF0C3	[Mode 2x] Gr2 Pre-load value(High word) / Number of output pulse(High word)
46	WRF0C4	[Mode 2x] Gr3 Pre-load value(Low word) / Number of output pulse(Low word)
47	WRF0C5	[Mode 2x] Gr3 Pre-load value(High word) / Number of output pulse(High word)
48	WRF0C6	[Mode 2x] Gr4 Pre-load value(Low word) / Number of output pulse(Low word)
49	WRF0C7	[Mode 2x] Gr4 Pre-load value(High word) / Number of output pulse(High word)

9.3 RS-232C Communication board

			Turne	FU OD222			
			Туре	EH-OB232			
			Weight	0.02 kg			
	 3] Memory board 5] Mounting hole 4] Connector to b 	pasic		Analog input terminal 5] Mounting hole 1] Communication port			
	unit (the back)						
No.	Name	D	Details				
1]	Communication port	Communication port for programming tools or p	peripheral de	evices			
2]	Analog input	Input terminal for analog voltage signal					
-	terminal	Cable diameter : Single wire : 0.14 mm^2 to 1.2	5 mm^2				
		Strand wire : 0.14 mm^2 to 1.					
3]							
4]							
5]	Mounting hole	Use M3 screw to fix					

Terminal layout	No.	Signal	Meaning	Internal circuit
	1	SG	Signal ground	[1] SG
	2	VCC	5V DC output	
	3	PV10	10V DC output	$\begin{array}{c c} & & VCC \longrightarrow [2] VCC \\ \hline & & PV10 \longrightarrow [3] PV10 \end{array}$
	4	N.C.	-	
	5	SD	Sent data	
Socket connector	6	RD	Received data	[6] RD
(Top view)	7 N.C.		-	
	8	RS	Request to send	

[Cable diagram] (To RS-232C port of PC)

Option boar	d	PC D-Sub 9pin)
[1] SG	}∙	 [5] GND
[2] VCC	-	[7] RTS
[3] PV12	1	 [8] CTS
[4]] / [[6] DSR
[5] SD]/	 [2] RxD
[6] RD	↓ / / /	[3] TxD
[7]] / •	 [4] DTR
[8] RS]/ l	 [1] DCD

Standard RS-232C communication cable for the existing port on basic unit can be used with this option port too.

[Analog input]

Specification

•	
No. of input	2 ch.
Internal output registers (ch.1, ch. 2)	WRF03E, WRF03F
Input range	0-10V (10.24V max.)
Accuracy	±1%
Resolution	10 bits
Input impedance	100 kΩ
Isolation between channels	Not isolated
Isolation between CPU and analog signal	Not isolated

Table. 9.3 Analog input specifications

Analog input terminals are shown as below.

Figure. 9.3 Analog input terminals on option board

Converted analog input values are stored in internal outputs WRF03E and WRF03F (10-bit, 0 to H3FF)

Analog input values could be unstable depending on environmental conditions. This can be reduced by setting sampling number as below. Averaged values will be stored in WRF03E and WRF03F based on sampling number. Possible sampling number is from 0 to 40 (0 to H28). If 0 is set, input values are not averaged. If 41 or larger number is set, it is regarded as 40.

Figure. 9.5 Sampling number of analog input values

9.4 RS-422 / 485 Communication board

			Туре	EH-OB485			
			Weight	0.02 kg			
	 3] Memory board 5] Mounting hole 4] Connector to b unit (the back) 	5] Mounting hole					
No.	Name	D	etails				
1]	Communication port	Communication port for programming tools or p	eripheral de	vices			
2]	Analog input	Input terminal for analog voltage signal					
_	terminal	Cable diameter : Single wire : 0.14 mm ² to 1.5 Strand wire : 0.14 mm ² to 1.4					
3]	Memory board connector	Connector to memory board					
4]	Connector to basic unit	Connector to basic unit (located at the back side	Connector to basic unit (located at the back side)				
5]	Mounting hole	Use M3 screw to fix					

Terminal layout	No.	Signal	Meaning	Internal circuit
	1	SG	Signal ground	[1] SG
	2	2 VCC 5V DC output		$\begin{array}{c} & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$
	3	N.C.	Not used	[3] N.C.
	4	SDP	Sent data +	• [4] SDP
	5	SDN	Sent data –	5] SDN
Socket connector	6	RDN	Received data –	• • [6] RDN
(Top view)	7	RDP	Received data +	$\begin{array}{c c} & & & \\ &$
	8	TERM	Terminal resistor	· 12052 [8] TERM

[Cable diagram]

(1) RS-422

Use a terminal resistor if necessary

(2) RS-485

Use a terminal resistor if necessary

[Analog input]

Same as EH-OB232. Refer to the page of EH-OB232.

9.5 USB board

			Туре	EH-OBUSB
			Weight	0.02 kg
2] Memory board connector				
4] Mounting hole				
3] Connector to basic unit (the back)				
No.	Name	Details		
1]	Communication port USB (B-plut) connector	Communication port for programming tools or peripheral devices Connect USB B-plug. USB Cable (B plug)		
2]	Memory board connector	Connector to memory board		
3]	Connector to basic unit	Connector to basic unit (located at the back side)		
4]	Mounting hole	Use M3 screw to fix		

Since this board is a converter from RS-232C to USB, the USB port of PC must be regarded as RS-232C port. For this reason, COM port driver is necessary for your PC. Please download the driver from following URL and install so that USB port works as serial port.

http://www.ftdichip.com/Drivers/FT232-FT245Drivers.htm

COM port number of programming software must be matched with COM port number configured in your PC.

[Note]

- USB cable is not included with EH-OBUSB.
- EH-OBUSB does not have analog input terminal. Special internal output for analog signal (WRF03E, WRF03F) will be undefined status when EH-OBUSB is installed.
- If EH-OBUSB is used in noisy environments, use a ferrite core with communication cable.